Three-dimensional photonic crystals as a cage for light

Abstract We review recent developments in three-dimensional photonic crystals. State of the art fabrication methods, such as layer-by-layer micromachining, self-assembly and various etching, lithographic and holographic techniques are discussed. We present an overview of optical studies of photonic band gap formation, such as reflectivity, transmission and time-resolved pulse propagation experiments. The fundamental issues associated with disorder and absorption are also considered. Progress towards the ultimate goal of full spontaneous emission control is reviewed. Finally, remaining open questions are summarized. To cite this article: A.F. Koenderink et al., C. R. Physique 3 (2002) 67–77

[1]  M. Megens,et al.  X-ray Diffraction of Photonic Colloidal Single Crystals , 1997 .

[2]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[3]  Rudolf Sprik,et al.  Optical emission in periodic dielectrics , 1996 .

[4]  Martorell,et al.  Observation of inhibited spontaneous emission in a periodic dielectric structure. , 1990, Physical review letters.

[5]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[6]  Jean-Michel Lourtioz,et al.  Submicrometer resolution Yablonovite templates fabricated by x-ray lithography , 2000 .

[7]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[8]  J. Fleming,et al.  Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 microm. , 1999, Optics letters.

[9]  Alexei Chelnokov,et al.  Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon , 2000 .

[10]  Francisco Meseguer,et al.  Photonic band gap properties of CdS-in-opal systems , 2001 .

[11]  A. Imhof,et al.  Ordered macroporous materials by emulsion templating , 1997, Nature.

[12]  Reginald W. James,et al.  The Optical principles of the diffraction of X-rays , 1948 .

[13]  Y. Vlasov,et al.  Single-domain spectroscopy of self-assembled photonic crystals , 2000 .

[14]  Willem L. Vos,et al.  LARGE DISPERSIVE EFFECTS NEAR THE BAND EDGES OF PHOTONIC CRYSTALS , 1999 .

[15]  Masanori Ozaki,et al.  Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal , 1998 .

[16]  Vos,et al.  Strong effects of photonic band structures on the diffraction of colloidal crystals , 1996 .

[17]  Kurt Busch,et al.  PHOTONIC BAND GAP FORMATION IN CERTAIN SELF-ORGANIZING SYSTEMS , 1998 .

[18]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[19]  Willem L. Vos,et al.  Multiple Bragg wave coupling in photonic band gap crystals , 2000 .

[20]  E. H. Linfoot Principles of Optics , 1961 .

[21]  E. Petrov,et al.  Petrov et al. Reply , 1999 .

[22]  Costas M. Soukoulis,et al.  Photonic Crystals and Light Localization in the 21st Century , 2001 .

[23]  N. Clark,et al.  Electro-optic Behavior of Liquid-Crystal-Filled Silica Opal Photonic Crystals , 2001 .

[24]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[25]  Masaya Notomi,et al.  Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap , 2000 .

[26]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[27]  J. Joannopoulos,et al.  Donor and acceptor modes in photonic band structure. , 1991, Physical review letters.

[28]  Susumu Noda,et al.  Design for Waveguides in Three-Dimensional Photonic Crystals. , 2000 .

[29]  V. V. Nikolaev,et al.  Different regimes of light localization in a disordered photonic crystal , 1999 .

[30]  O. Z. Karimov,et al.  EXISTENCE OF A PHOTONIC PSEUDOGAP FOR VISIBLE LIGHT IN SYNTHETIC OPALS , 1997 .

[31]  Willem L. Vos,et al.  Light sources inside photonic crystals , 1999 .

[32]  C. S. Sotomayor Torres,et al.  Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  R. Baughman,et al.  Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. , 2001, Physical review letters.

[34]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[35]  Vlasov,et al.  Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Sven Matthias,et al.  Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter , 2001 .

[37]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[38]  Watson,et al.  Impurity modes in the optical stop bands of doped colloidal crystals. , 1996, Physical review. B, Condensed matter.

[39]  Kurt Busch,et al.  Tunable two-dimensional photonic crystals using liquid crystal infiltration , 2000 .

[40]  Sergey V. Gaponenko,et al.  Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal , 1998 .

[41]  Jane F. Bertone,et al.  Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals , 1999 .

[42]  Sergey V. Gaponenko,et al.  Photonic band gap phenomenon and optical properties of artificial opals , 1997 .

[43]  Willem L. Vos,et al.  Fluorescence lifetimes and linewidths of dye in photonic crystals , 1999 .

[44]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[45]  Masanori Ozaki,et al.  Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal , 1999 .

[46]  G Klein,et al.  Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Li,et al.  Spontaneous emission from photonic crystals: full vectorial calculations , 2000, Physical review letters.

[48]  Ad Lagendijk,et al.  Resonant multiple scattering of light , 1996 .

[49]  Andrew G. Glen,et al.  APPL , 2001 .

[50]  M. Megens,et al.  Enhanced backscattering from photonic crystals , 2000 .

[51]  Watson,et al.  Photonic band structure of fcc colloidal crystals. , 1996, Physical review letters.

[52]  O. Z. Karimov,et al.  Photonic band gaps in 3D ordered fcc silica matrices , 1996 .

[53]  Transmission and diffraction by photonic colloidal crystals , 1996 .

[54]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[55]  Zhao-qing Zhang,et al.  Weak photonic band gap effect on the fluorescence lifetime in three-dimensional colloidal photonic crystals , 2001 .

[56]  Z V Vardeny,et al.  Anomalous coherent backscattering of light from opal photonic crystals. , 2001, Physical review letters.

[57]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[58]  Daniel M. Mittleman,et al.  Optical properties of a photonic crystal of hollow spherical shells , 2000 .

[59]  Willem L. Vos,et al.  Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap , 2000 .

[60]  A. Reynolds,et al.  Opal photonic crystals infiltrated with chalcogenide glasses , 2001 .

[61]  Kwong-Kit Choi,et al.  Enhancement and suppression of thermal emission by a three-dimensional photonic crystal , 2000 .

[62]  D. McComb,et al.  Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix , 2000 .

[63]  Willem L. Vos,et al.  Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania , 2001 .

[64]  Willem L. Vos,et al.  INHIBITED LIGHT PROPAGATION AND BROADBAND REFLECTION IN PHOTONIC AIR-SPHERE CRYSTALS , 1999 .

[65]  C. López,et al.  Bragg diffraction from indium phosphide infilled fcc silica colloidal crystals , 1999 .

[66]  W. Vos,et al.  Particle excursions in colloidal crystals. , 2001, Physical review letters.

[67]  Shi-Yao Zhu,et al.  Spontaneous emission from a two-level atom in a three-dimensional photonic crystal , 2000 .

[68]  Tetsuo Tsutsui,et al.  SPONTANEOUS EMISSION FROM FLUORESCENT MOLECULES EMBEDDED IN PHOTONIC CRYSTALS CONSISTING OF POLYSTYRENE MICROSPHERES , 1998 .

[69]  Yurii A. Vlasov,et al.  Chemical Approaches to Three‐Dimensional Semiconductor Photonic Crystals , 2001 .

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Nigel P. Johnson,et al.  The Effect of the Photonic Stop-Band upon the Photoluminescence of CdS in Opal , 1997 .

[72]  Orlin D. Velev,et al.  Structured porous materials via colloidal crystal templating: from inorganic oxides to metals , 2000 .

[73]  Baughman,et al.  Carbon structures with three-dimensional periodicity at optical wavelengths , 1998, Science.

[74]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[75]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[76]  Henry Schriemer,et al.  Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals , 2000 .

[77]  P. Knight,et al.  Transparency near a photonic band edge , 1999, quant-ph/9908026.

[78]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[79]  R. Ruel,et al.  Template-directed colloidal crystallization , 1997, Nature.

[80]  C. López,et al.  CdS photoluminescence inhibition by a photonic structure , 1998 .

[81]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[82]  M. Megens,et al.  In Situ Characterization of Colloidal Spheres by Synchrotron Small-Angle X-ray Scattering , 1997 .

[83]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[84]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .