Band anticrossing and luminescence emission in dilute InAs1−x−yNxSby quaternary alloys

In this paper, we calculate the luminescence of the dilute quaternary InAs1-x-yNxSby semiconductor using a microscopic approach. The theory starts with the band anticrossing model applied to both conduction and the valence band to generate input for analytical approximations that lead to luminescence spectra, including relevant many body effects. Direct application of the equations leads to good agreement with recently measured experimental data.

[1]  C. Oriaku,et al.  Simulations of mid infrared emission of InAsN semiconductors , 2015 .

[2]  I. A. Faragai,et al.  Coupling of THz radiation with intervalence band transitions in microcavities. , 2014, Optics express.

[3]  J. Misiewicz,et al.  Temperature dependence of photoluminescence from InNAsSb layers: The role of localized and free carrier emission in determination of temperature dependence of energy gap , 2013 .

[4]  Stephen J. Sweeney,et al.  Band engineering in dilute nitride and bismide semiconductor lasers , 2012, 1208.6441.

[5]  Mauro Pereira,et al.  Microscopic approach for intersubband-based thermophotovoltaic structures in the terahertz and mid-infrared , 2011 .

[6]  S. Tomić,et al.  Intersubband gain without global inversion through dilute nitride band engineering , 2011 .

[7]  Handong Sun,et al.  Photoluminescence properties of midinfrared dilute nitride InAsN epilayers with/without Sb flux during molecular beam epitaxial growth , 2009 .

[8]  A. Krier,et al.  Molecular beam epitaxial (MBE) growth and spectroscopy of dilute nitride InAsN:Sb for mid-infrared applications , 2009 .

[9]  Mauro F. Pereira,et al.  Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers , 2009 .

[10]  Mauro F. Pereira,et al.  Momentum dependent scattering matrix elements in quantum cascade laser transport , 2009, Microelectron. J..

[11]  M. F. Pereira,et al.  Impact of momentum dependent matrix elements on scattering effects in quantum cascade lasers , 2009 .

[12]  Mauro Pereira,et al.  Intervalence transverse-electric mode terahertz lasing without population inversion , 2008 .

[13]  L. R. Wilson,et al.  Fingerprints of spatial charge transfer in Quantum Cascade Lasers , 2007, 0708.1274.

[14]  M. F. Pereira,et al.  Characterization of intersubband devices combining a nonequilibrium many body theory with transmission spectroscopy experiments , 2007 .

[15]  Mauro F. Pereira Intersubband antipolaritons: microscopic approach , 2007 .

[16]  P. H. Jefferson,et al.  Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys , 2005 .

[17]  D. Hommel,et al.  High‐density effects, stimulated emission, and electrooptical properties of ZnCdSe/ZnSe single quantum wells and laser diodes , 1996 .

[18]  V. Pereira Analytical solutions for the optical absorption of semiconductor superlattices. , 1995, Physical review. B, Condensed matter.

[19]  R. Binder,et al.  Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects , 1994 .

[20]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .