Collision detection for deforming necklaces

In this paper, we propose to study deformable necklaces --- flexible chains of balls, called beads, in which only adjacent balls may intersect. Such objects can be used to model macro-molecules, muscles, rope, and other 'linear' objects in the physical world. In this paper, we exploit this linearity to develop geometric structures associated with necklaces that are useful in physical simulations. We show how these structures can be implemented efficiently and maintained under necklace deformation. In particular, we study a bounding volume hierarchy based on spheres built on a necklace. Such a hierarchy is easy to compute and is suitable for maintenance when the necklace deforms, as our theoretical and experimental results show. This hierarchy can be used for collision and self-collision detection. In particular, we achieve an upper bound of O(nlog n) in two dimensions and O(n 2-2/d) in d-dimensions, d 3, for collision checking. To our knowledge, this is the first sub-quadratic bound proved for a collision detection algorithm using predefined hierarchies. In addition, we show that the power diagram, with the help of some additional mechanisms, can be also used to detect self-collisions of a necklace in certain ways complementary to the sphere hierarchy.

[1]  Jeff Erickson,et al.  Local polyhedra and geometric graphs , 2003, SCG '03.

[2]  Bernd Gärtner,et al.  The smallest enclosing ball of balls: combinatorial structure and algorithms , 2003, SCG '03.

[3]  Zukang Feng,et al.  The Protein Data Bank and structural genomics , 2003, Nucleic Acids Res..

[4]  Bettina Speckmann,et al.  Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons , 2002, SCG '02.

[5]  Jean-Claude Latombe,et al.  Efficient maintenance and self-collision testing for Kinematic Chains , 2002, SCG '02.

[6]  Leonidas J. Guibas,et al.  Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..

[7]  Pankaj K. Agarwal,et al.  STAR-Tree: An Efficient Self-Adjusting Index for Moving Objects , 2002, ALENEX.

[8]  Jeff Erickson,et al.  Dense Point Sets Have Sparse Delaunay Triangulations or “... But Not Too Nasty” , 2001, SODA '02.

[9]  Jeff Erickson,et al.  Dense point sets have sparse Delaunay triangulations , 2001, ArXiv.

[10]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[11]  Leonidas J. Guibas,et al.  Kinetic collision detection: algorithms and experiments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  Jeff Erickson,et al.  Nice Point Sets Can Have Nasty Delaunay Triangulations , 2001, SCG '01.

[13]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[14]  Bettina Speckmann,et al.  Kinetic collision detection for simple polygons , 2000, SCG '00.

[15]  K. Bathe,et al.  The method of finite spheres , 2000 .

[16]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[17]  Leonidas J. Guibas,et al.  Kinetic collision detection between two simple polygons , 2004, SODA '99.

[18]  Subhash Suri,et al.  Analysis of a bounding box heuristic for object intersection , 1999, SODA '99.

[19]  Bernd Gärtner,et al.  Fast and Robust Smallest Enclosing Balls , 1999, ESA.

[20]  Leonidas J. Guibas,et al.  Separation-sensitive collision detection for convex objects , 1998, SODA '99.

[21]  Ho-Lun Cheng,et al.  Shape space from deformation , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).

[22]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[23]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..

[24]  Leonidas J. Guibas,et al.  Euclidean proximity and power diagrams , 1998, CCCG.

[25]  Ming C. Lin,et al.  Collision Detection between Geometric Models: A Survey , 1998 .

[26]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[27]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.

[28]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[29]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[30]  Leonidas J. Guibas,et al.  BOXTREE: A Hierarchical Representation for Surfaces in 3D , 1996, Comput. Graph. Forum.

[31]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[32]  Geert-Jan Giezeman,et al.  The CGAL Kernel: A Basis for Geometric Computation , 1996, WACG.

[33]  Dinesh Manocha,et al.  Incremental algorithms for collision detection between solid models , 1995, Symposium on Solid Modeling and Applications.

[34]  Elmar Schömer,et al.  Efficient collision detection for moving polyhedra , 1995, SCG '95.

[35]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[36]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[37]  Dinesh Manocha,et al.  Incremental Algorithms for Collision Detection Between General Solid Models , 1994 .

[38]  Sean Quinlan,et al.  Efficient distance computation between non-convex objects , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[39]  Jarek Rossignac,et al.  Solid modeling , 1994, IEEE Computer Graphics and Applications.

[40]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[41]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[42]  J. Ponder,et al.  An efficient newton‐like method for molecular mechanics energy minimization of large molecules , 1987 .

[43]  Günter Rote,et al.  Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane , 1987, ICALP.

[44]  J. Schwartz,et al.  Efficient Detection of Intersections among Spheres , 1983 .

[45]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[46]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[47]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.