Roadmap on plasmonics

Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons-elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

[1]  M. Dresselhaus,et al.  Spectral mapping of thermal conductivity through nanoscale ballistic transport. , 2015, Nature nanotechnology.

[2]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[3]  A. Hayat,et al.  Optical access to topological insulator spin dynamics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[4]  Vladimir M. Shalaev,et al.  Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited] , 2015 .

[5]  D. Tsai,et al.  Plasmonic photocatalysis , 2013, Reports on progress in physics. Physical Society.

[6]  R. Kienberger,et al.  Attosecond Physics: Attosecond Streaking Spectroscopy of Atoms and Solids , 2015 .

[7]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[8]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[9]  Vladimir M. Shalaev,et al.  Nanoparticle plasmonics: going practical with transition metal nitrides , 2015 .

[10]  マーク ストックマン,et al.  Nanoplasmonics : The physics behind the applications , 2012 .

[11]  Justin B. Sambur,et al.  Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes , 2016, Nature.

[12]  M. Stockman,et al.  Nanoplasmonic sensing and detection , 2015, Science.

[13]  Hongxing Xu,et al.  Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics , 2014, Nature Communications.

[14]  Namkyoo Park,et al.  Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. , 2012, ACS nano.

[15]  Jeremy J. Baumberg,et al.  Single-molecule optomechanics in “picocavities” , 2016, Science.

[16]  Xiang Zhang,et al.  Multiplexed and electrically modulated plasmon laser circuit. , 2012, Nano letters.

[17]  Dan Li,et al.  Solar evaporation enhancement using floating light-absorbing magnetic particles , 2011 .

[18]  Wenshan Cai,et al.  3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination , 2016, Nature Photonics.

[19]  Katrin Kneipp,et al.  Surface-enhanced Raman scattering , 2006 .

[20]  R. Schiff,et al.  Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells , 2014, ACS nano.

[21]  P. Calvani,et al.  Observation of Dirac plasmons in a topological insulator. , 2013, Nature nanotechnology.

[22]  R. Holzwarth,et al.  Attosecond spectroscopy in condensed matter , 2007, Nature.

[23]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[24]  L. Novotný,et al.  Antennas for light , 2011 .

[25]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[26]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[27]  N. Zheludev,et al.  Low-loss terahertz superconducting plasmonics , 2012 .

[28]  Peter Hommelhoff,et al.  Attosecond control of electrons emitted from a nanoscale metal tip , 2011, Nature.

[29]  C. Jozwiak,et al.  Spin-polarized surface resonances accompanying topological surface state formation , 2016, Nature Communications.

[30]  V. Apalkov,et al.  Optical-field-induced current in dielectrics , 2012, Nature.

[31]  F. García-Vidal,et al.  Cavity-induced modifications of molecular structure in the strong coupling regime , 2015, 1506.03331.

[32]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[33]  Paul Mulvaney,et al.  Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. , 2008, Nature nanotechnology.

[34]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[35]  B. Reinhard,et al.  Directed Assembly of Optoplasmonic Hybrid Materials with Tunable Photonic-Plasmonic Properties. , 2015, The journal of physical chemistry letters.

[36]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[37]  E. Meyhofer,et al.  Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. , 2016, Nature nanotechnology.

[38]  Stokes-anti-Stokes correlations in diamond. , 2015, Optics letters.

[39]  Vladimir M. Shalaev,et al.  Plasmonics—turning loss into gain , 2016, Science.

[40]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[41]  G. Mahan,et al.  Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities , 2017, 1802.01469.

[42]  Pål Løvhaugen,et al.  Measurement of mechanical forces acting on optically trapped dielectric spheres induced by surface-enhanced Raman scattering. , 2009, Physical review letters.

[43]  Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator. , 2016, Nano letters.

[44]  V. A. Apkarian,et al.  Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions , 2016 .

[45]  F. Krausz,et al.  Attosecond nanoscale near-field sampling , 2015, Nature Communications.

[46]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[47]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[48]  J. Dionne,et al.  In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. , 2014, Nature materials.

[49]  P. Kristensen,et al.  Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators , 2013, 1312.5769.

[50]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[51]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[52]  Gang Chen,et al.  Plasmonic materials for energy: From physics to applications , 2013, 1310.6949.

[53]  Z. Fisk,et al.  Non-Kondo-like electronic structure in the correlated rare-earth hexaboride YbB(6). , 2014, Physical review letters.

[54]  Mengtao Sun,et al.  Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits , 2015, Light: Science & Applications.

[55]  David J. Bergman,et al.  Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems , 2004 .

[56]  Tobias J Kippenberg,et al.  Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. , 2014, Nature nanotechnology.

[57]  K. Kneipp,et al.  Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps , 2013 .

[58]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[59]  Duane C. Karns,et al.  Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer , 2009 .

[60]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[61]  Ioannis Tomkos,et al.  Plasmonic communications : light on a wire , 2013 .

[62]  Ferenc Krausz,et al.  Attosecond metrology: from electron capture to future signal processing , 2014, Nature Photonics.

[63]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[64]  M. Raschke,et al.  Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. , 2016, Nature nanotechnology.

[65]  Nikolay I. Zheludev,et al.  Superconducting Plasmonics and Extraordinary Transmission , 2010 .

[66]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[67]  N. Zheludev,et al.  Ultraviolet and visible range plasmonics of a topological insulator , 2014 .

[68]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[69]  N. V. van Hulst,et al.  Rapid and robust control of single quantum dots , 2016, Light: Science & Applications.

[70]  Nicolò Accanto,et al.  Phase control of femtosecond pulses on the nanoscale using second harmonic nanoparticles , 2014, Light: Science & Applications.

[71]  S. H. Chew,et al.  14. Attosecond Nanophysics , 2014 .

[72]  G. Schatz,et al.  Lasing action in periodic arrays of nanoparticles , 2015 .

[73]  Mark L. Brongersma,et al.  Electrically-Driven Subwavelength Optical Nanocircuits , 2014 .

[74]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[75]  M. Schiek,et al.  Ultrafast Electron Emission from a Sharp Metal Nanotaper Driven by Adiabatic Nanofocusing of Surface Plasmons. , 2015, Nano letters.

[76]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[77]  S. Boriskina,et al.  Heat meets light on the nanoscale , 2016, 1604.08101.

[78]  George C Schatz,et al.  Ultrafast and nonlinear surface-enhanced Raman spectroscopy. , 2016, Chemical Society reviews.

[79]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[80]  Teri W. Odom,et al.  Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. , 2017, Nature nanotechnology.

[81]  Bruce H. Robinson,et al.  Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores , 2014 .

[82]  Steven M. Anlage,et al.  Progress in superconducting metamaterials , 2014, 1403.6514.

[83]  Nikolay I. Zheludev,et al.  Radiation-harvesting resonant superconducting sub-THz metamaterial bolometer , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[84]  E. Goulielmakis,et al.  Optical attosecond pulses and tracking the nonlinear response of bound electrons , 2016, Nature.

[85]  N. V. Hulst,et al.  Resonant plasmonic nanoparticles for multicolor second harmonic imaging , 2016 .

[86]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[87]  Gennady Shvets,et al.  Plasmonic nanolaser using epitaxially grown silver film , 2012, CLEO 2012.

[88]  A. Polman,et al.  Nanophotonics: Shrinking light-based technology , 2015, Science.

[89]  Erik Jan Geluk,et al.  Surface plasmon lasing observed in metal hole arrays. , 2013, Physical review letters.

[90]  S. H. Chew,et al.  Imaging Localized Surface Plasmons by Femtosecond to Attosecond Time‐Resolved Photoelectron Emission Microscopy – “ATTO‐PEEM” , 2015 .

[91]  Nicolò Accanto,et al.  Ultrafast meets ultrasmall: controlling nanoantennas and molecules , 2016 .

[92]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[93]  Zsuzsanna Heiner,et al.  Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[94]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[95]  Harald Giessen,et al.  Plasmonic gas and chemical sensing , 2014 .

[96]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.

[97]  J. Kneipp,et al.  Surface enhanced hyper Raman scattering (SEHRS) and its applications. , 2017, Chemical Society reviews.

[98]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[99]  Aaswath Raman,et al.  Roadmap on optical energy conversion , 2016 .

[100]  Chih-Kang Shih,et al.  All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. , 2014, Nano letters.

[101]  C. Soci,et al.  All-chalcogenide phase-change plasmonics , 2016 .

[102]  J. Bokor,et al.  Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. , 2013, Optics express.

[103]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[104]  Alexandra Boltasseva,et al.  Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. , 2016, Nature nanotechnology.

[105]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[106]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[107]  P. Berini,et al.  Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides. , 2016, Nanoscale.

[108]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[109]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[110]  Capturing the optical phase response of nanoantennas by coherent second-harmonic microscopy. , 2014, Nano letters.

[111]  Anders Kristensen,et al.  Plasmonic colour laser printing. , 2016, Nature nanotechnology.

[112]  F. Krausz,et al.  Reconstruction of Nanoscale Near Fields by Attosecond Streaking , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[113]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[114]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[115]  Christoph Lienau,et al.  Plasmonic nanofocusing – grey holes for light , 2016 .

[116]  G. Schatz,et al.  Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays , 2015 .

[117]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[118]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[119]  Zhanghua Han,et al.  Radiation guiding with surface plasmon polaritons , 2013, Reports on progress in physics. Physical Society.

[120]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[121]  S. Linic,et al.  Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. , 2016, ACS nano.

[122]  Laurens Kuipers,et al.  Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence. , 2007, Nano letters.

[123]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[124]  M El Sayed,et al.  SHAPE AND SIZE DEPENDENCE OF RADIATIVE, NON-RADIATIVE AND PHOTOTHERMAL PROPERTIES OF GOLD NANOCRYSTALS , 2000 .

[125]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[126]  Romain Quidant,et al.  Nanoplasmonics for chemistry. , 2014, Chemical Society reviews.

[127]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[128]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[129]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[130]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[131]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[132]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[133]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[134]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[135]  Koray Aydin,et al.  Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. , 2015, ACS nano.

[136]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[137]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[138]  N. Zheludev,et al.  Giant nonlinearity in a superconducting sub-terahertz metamaterial , 2016 .

[139]  Ranjan Singh,et al.  Accessing the High‐Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces , 2016 .

[140]  Gang Chen,et al.  Steam generation under one sun enabled by a floating structure with thermal concentration , 2016, Nature Energy.

[141]  R. Dasari,et al.  Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. , 1996, Physical review letters.

[142]  Xiaoji G. Xu,et al.  Femtosecond nanofocusing with full optical waveform control. , 2011, Nano letters.

[143]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[144]  Nikolay I. Zheludev,et al.  All-dielectric phase-change reconfigurable metasurface , 2016, 1604.01330.

[145]  Bert Hecht,et al.  Electrically driven optical antennas , 2015 .

[146]  Ferenc Krausz,et al.  Attosecond Nanoplasmonic Field Microscope , 2007 .

[147]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[148]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[149]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[150]  Xiang Zhang,et al.  Explosives detection in a lasing plasmon nanocavity. , 2014, Nature nanotechnology.

[151]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[152]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[153]  J. A. Pérez-Hernández,et al.  Attosecond physics at the nanoscale , 2016, Reports on progress in physics. Physical Society.

[154]  Zhen Tian,et al.  Terahertz superconducting plasmonic hole array. , 2010, Optics letters.

[155]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[156]  K. Kneipp,et al.  Non‐resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates , 2014 .

[157]  N. Zheludev,et al.  Superconductor photonics , 2014, Nature Photonics.

[158]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[159]  Naomi J. Halas,et al.  Nanoshells for Integrated Cancer Imaging and Therapy , 2006 .

[160]  Javier Aizpurua,et al.  Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. , 2015, ACS nano.

[161]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[162]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[163]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[164]  M. Smit,et al.  Plasmonic communications : light on a wire , 2013 .

[165]  Franco Nori,et al.  Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear, and quantum phenomena , 2009 .

[166]  Jacob B Khurgin How to deal with the loss in plasmonics and metamaterials. , 2015, Nature nanotechnology.

[167]  Superconductivity: 100th Anniversary of Its Discovery and Its Future , 2012 .

[168]  G. Steinmeyer,et al.  Femtosecond light transmission and subradiant damping in plasmonic crystals. , 2005, Physical review letters.

[169]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[170]  C. Powell,et al.  Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium , 1960 .

[171]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[172]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[173]  Mustafa Sarimollaoglu,et al.  Spaser as a biological probe , 2017, Nature Communications.