Representing colour through hearing and touch in sensory substitution devices.

Visual sensory substitution devices (SSDs) allow visually-deprived individuals to navigate and recognise the 'visual world'; SSDs also provide opportunities for psychologists to study modality-independent theories of perception. At present most research has focused on encoding greyscale vision. However at the low spatial resolutions received by SSD users, colour information enhances object-ground segmentation, and provides more stable cues for scene and object recognition. Many attempts have been made to encode colour information in tactile or auditory modalities, but many of these studies exist in isolation. This review brings together a wide variety of tactile and auditory approaches to representing colour. We examine how each device constructs 'colour' relative to veridical human colour perception and report previous experiments using these devices. Theoretical approaches to encoding and transferring colour information through sound or touch are discussed for future devices, covering alternative stimulation approaches, perceptually distinct dimensions and intuitive cross-modal correspondences.

[1]  Joshua D. Reiss,et al.  An Investigation of Musical Timbre: Uncovering Salient Semantic Descriptors and Perceptual Dimensions , 2011, ISMIR.

[2]  D. Jameson,et al.  An opponent-process theory of color vision. , 1957, Psychological review.

[3]  Thierry Pun,et al.  An audio-haptic tool for non-visual image representation , 2001, Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467).

[4]  Michael J. Proulx,et al.  How well do you see what you hear? The acuity of visual-to-auditory sensory substitution , 2013, Front. Psychol..

[5]  T L Hubbard,et al.  Synesthesia-like mappings of lightness, pitch, and melodic interval. , 1996, The American journal of psychology.

[6]  Vera U. Ludwig,et al.  What colour does that feel? Tactile–visual mapping and the development of cross-modality , 2013, Cortex.

[7]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[8]  Kees van den Doel,et al.  SOUNDVIEW: SENSING COLOR IMAGES BY KINESTHETIC AUDIO , 2003 .

[9]  Using Neuroimaging to Measure Mental Representations , 1999 .

[10]  Zhigang Zhu,et al.  KinDectect: Kinect Detecting Objects , 2012, ICCHP.

[11]  R. Shepard Circularity in Judgments of Relative Pitch , 1964 .

[12]  Simon Meers,et al.  A vision system for providing 3D perception of the environment via transcutaneous electro-neural stimulation , 2004 .

[13]  L E Marks,et al.  On cross-modal similarity: auditory-visual interactions in speeded discrimination. , 1987, Journal of experimental psychology. Human perception and performance.

[14]  Charles E. Thorpe,et al.  SCARF: a color vision system that tracks roads and intersections , 1993, IEEE Trans. Robotics Autom..

[15]  P. Kay,et al.  Focal colors are universal after all. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Daniel Smilek,et al.  Geometric Shape Detection with Soundview , 2004, ICAD.

[17]  Peter B. L. Meijer,et al.  An experimental system for auditory image representations , 1992, IEEE Transactions on Biomedical Engineering.

[18]  P. Bach-y-Rita,et al.  Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. , 1998, Journal of rehabilitation research and development.

[19]  L. Else A cyborg makes art using seventh sense , 2012 .

[20]  D. Grantham,et al.  Auditory spatial resolution in horizontal, vertical, and diagonal planes. , 2003, The Journal of the Acoustical Society of America.

[21]  Ron Kupers,et al.  Navigation with a sensory substitution device in congenitally blind individuals , 2011, Neuroreport.

[22]  Hervé Segond,et al.  Human Spatial Navigation via a Visuo-Tactile Sensory Substitution System , 2005, Perception.

[23]  Amir Amedi,et al.  ‘Visual’ Acuity of the Congenitally Blind Using Visual-to-Auditory Sensory Substitution , 2012, PloS one.

[24]  Dianne T. V. Pawluk,et al.  A cheap, portable haptic device for a method to relay 2-D texture-enriched graphical information to individuals who are visually impaired , 2009, Assets '09.

[25]  Kenneth J. Kokjer,et al.  The Information Capacity of the Human Fingertip , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  L. Marks,et al.  Cross-Modal Interaction between Vision and Touch: The Role of Synesthetic Correspondence , 2000, Perception.

[27]  Guido Bologna,et al.  A perceptual interface for vision substitution in a color matching experiment , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[28]  R. Butler,et al.  Localization of tonal stimuli in the vertical plane. , 1968, The Journal of the Acoustical Society of America.

[29]  R. Johansson,et al.  Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. , 1984, Human neurobiology.

[30]  Simon Meers,et al.  A substitute vision system for providing 3D perception and GPS navigation via electro-tactile stimulation , 2005 .

[31]  R. Etienne-Cummings,et al.  The feeling of color: A haptic feedback device for the visually disabled , 2008, 2008 IEEE Biomedical Circuits and Systems Conference.

[32]  M. Hollins,et al.  A ratio code for vibrotactile pitch. , 1998, Somatosensory & motor research.

[33]  Robert D. Melara,et al.  Interaction between synesthetically corresponding dimensions. , 1987 .

[34]  Kirsten Rassmus-Gröhn,et al.  The sense of touch provides new computer interaction techniques for disabled people , 1999 .

[35]  Dianne T. V. Pawluk,et al.  A tactile-thermal display for haptic exploration of virtual paintings , 2011, ASSETS '11.

[36]  M. Rowe,et al.  Perceived pitch of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding. , 1990, The Journal of physiology.

[37]  Cosmin Ancuti,et al.  ColEnViSon: Color Enhanced Visual Sonifier - A Polyphonic Audio Texture and Salient Scene Analysis , 2009, VISAPP.

[38]  T P Way,et al.  Automatic visual to tactile translation--Part II: Evaluation of the TACTile Image Creation System. , 1997, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[39]  T P Way,et al.  Automatic visual to tactile translation--Part I: Human factors, access methods, and image manipulation. , 1997, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[40]  Massimo Ferri,et al.  Vibrotactile color rendering for the visually impaired within the VIDET project , 1998, Other Conferences.

[41]  Steve Mann,et al.  Blind navigation with a wearable range camera and vibrotactile helmet , 2011, ACM Multimedia.

[42]  A. Oliva,et al.  Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence , 2005 .

[43]  Justin A. Harris,et al.  Factors Affecting Frequency Discrimination of Vibrotactile Stimuli: Implications for Cortical Encoding , 2006, PloS one.

[44]  K. Gegenfurtner,et al.  Effects of spatial and temporal context on color categories and color constancy. , 2007, Journal of vision.

[45]  Paolo Remagnino,et al.  Optimal Color Quantization for Real-Time Object Recognition , 2001, Real Time Imaging.

[46]  B. Sabel,et al.  Alterations of grey matter asymmetries in adolescents with prelingual deafness: a combined VBM and cortical thickness analysis. , 2013, Restorative neurology and neuroscience.

[47]  S Levy-Tzedek,et al.  Fast, accurate reaching movements with a visual-to-auditory sensory substitution device. , 2012, Restorative neurology and neuroscience.

[48]  L. Ou,et al.  A cross‐cultural comparison of colour emotion for two‐colour combinations , 2012 .

[49]  Guy J. Brown,et al.  Computational Auditory Scene Analysis: Principles, Algorithms, and Applications , 2006 .

[50]  Katsumi Aoki,et al.  Recent development of flow visualization , 2004, J. Vis..

[51]  B. Taylor Dimensional interactions in vibrotactile information processing , 1977 .

[52]  T. Jones,et al.  Age differences in the associations between felt temperatures and color choices. , 1975, The American journal of psychology.

[53]  Antonio Torralba,et al.  How many pixels make an image? , 2009, Visual Neuroscience.

[54]  M. Ptito,et al.  Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals , 2010, Brain Research Bulletin.

[55]  A. Fraioli,et al.  Sensation magnitude of vibrotactile stimuli , 1969 .

[56]  Yon Visell,et al.  Tactile sensory substitution: Models for enaction in HCI , 2009, Interact. Comput..

[57]  Ralph Etienne-Cummings,et al.  A color detection glove with haptic feedback for the visually disabled , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[58]  Roberta L. Klatzky,et al.  Stated Preferences for Components of a Personal Guidance System for Nonvisual Navigation , 2004 .

[59]  Josée Rivest,et al.  Localizing contours defined by more than one attribute , 1996, Vision Research.

[60]  Gi-Hun Yang,et al.  Quantitative tactile display device with pin-array type tactile feedback and thermal feedback , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[61]  Javier Varona,et al.  COL.diesis: Transforming Colour into Melody and Implementing the Result in a Colour Sensor Device , 2009, 2009 Second International Conference in Visualisation.

[62]  Scott P. Johnson,et al.  Preverbal Infants’ Sensitivity to Synaesthetic Cross-Modality Correspondences , 2010, Psychological science.

[63]  David J. Lewkowicz,et al.  Cross-modal equivalence in early infancy: Auditory–visual intensity matching. , 1980 .

[64]  Paul Bach-y-Rita,et al.  Brain plasticity: ‘visual’ acuity of blind persons via the tongue , 2001, Brain Research.

[65]  L E Marks,et al.  On associations of light and sound: the mediation of brightness, pitch, and loudness. , 1974, The American journal of psychology.

[66]  Guido Bologna,et al.  Blind Navigation along a Sinuous Path by Means of the See ColOr Interface , 2009, IWINAC.

[67]  Olivier R. Joubert,et al.  How long to get to the “gist” of real-world natural scenes? , 2005 .

[68]  Shachar Maidenbaum,et al.  Cross-sensory transfer of sensory-motor information: visuomotor learning affects performance on an audiomotor task, using sensory-substitution , 2012, Scientific Reports.

[69]  Sethuraman Panchanathan,et al.  Learning and perceiving colors haptically , 2006, Assets '06.

[70]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[71]  J. Grey Multidimensional perceptual scaling of musical timbres. , 1977, The Journal of the Acoustical Society of America.

[72]  W.J. Tompkins,et al.  Electrotactile and vibrotactile displays for sensory substitution systems , 1991, IEEE Transactions on Biomedical Engineering.

[73]  Simon Meers,et al.  Substitute three-dimensional perception using depth and colour sensors , 2007 .

[74]  Jamie Ward,et al.  Sound-Colour Synaesthesia: to What Extent Does it Use Cross-Modal Mechanisms Common to us All? , 2006, Cortex.

[75]  A. Chemero,et al.  A Demonstration of the Transition from Ready-to-Hand to Unready-to-Hand , 2010, PloS one.

[76]  Jessica Ebert,et al.  Scientists with disabilities: Access all areas , 2005, Nature.

[77]  B L Whitsel,et al.  Time course and action spectrum of vibrotactile adaptation. , 1990, Somatosensory & motor research.

[78]  Ron Kupers,et al.  Tactile–‘visual’ acuity of the tongue in early blind individuals , 2007, Neuroreport.