暂无分享,去创建一个
[1] Tong Zhang,et al. Learning Nonlinear Functions Using Regularized Greedy Forest , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] Fons Rademakers,et al. ROOT — An object oriented data analysis framework , 1997 .
[3] D Martschei,et al. Advanced event reweighting using multivariate analysis , 2012 .
[4] Pietro Perona,et al. Quickly Boosting Decision Trees - Pruning Underachieving Features Early , 2013, ICML.
[5] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[6] John Mingers,et al. An Empirical Comparison of Pruning Methods for Decision Tree Induction , 1989, Machine Learning.
[7] Arnaldo Carvalho de Melo,et al. The New Linux ’ perf ’ Tools , 2010 .
[8] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[9] Nicholas Nethercote,et al. Valgrind: a framework for heavyweight dynamic binary instrumentation , 2007, PLDI '07.
[10] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[11] Guido D. Salvucci,et al. Ieee standard for binary floating-point arithmetic , 1985 .
[12] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[13] Jop F. Sibeyn,et al. Algorithms for Memory Hierarchies: Advanced Lectures , 2003 .
[14] Markus Kowarschik,et al. An Overview of Cache Optimization Techniques and Cache-Aware Numerical Algorithms , 2002, Algorithms for Memory Hierarchies.
[15] J. Friedman. Stochastic gradient boosting , 2002 .
[16] Tianqi Chen,et al. Higgs Boson Discovery with Boosted Trees , 2014, HEPML@NIPS.
[17] F. Tegenfeldt,et al. TMVA - Toolkit for multivariate data analysis , 2012 .
[18] F. Rademakers,et al. ROOT — An object oriented data analysis framework , 1997 .