Experiments on flows, boiling and heat transfer in porous media: Emphasis on bottom injection

Abstract This paper deals with basic experiments conducted to analyse the effect of the particles’ shape and size distribution on intrinsic properties of porous beds as well as two-phase flow and heat transfer in these porous media. Structural, transport properties, flow laws and heat transfer with phase-change phenomena in several kinds of porous media are presented and discussed. The porosity of stacks constituted by spheres of various sizes is analysed. A variation law of the porosity as a function of the standard deviation of the particle size distribution is proposed. The porosity, tortuosity, permeability and inertial coefficient of the flow law in randomly stacked fibres are established experimentally and theoretically. The porosity of such media is found to vary from 0.35 to 0.92 according to the fibre aspect ratio. Tortuosity and Kozeny–Carman parameters are determined by both electric and hydrodynamic methods. These parameters are found to vary with the porosity of the fibrous bed. New relations of permeability and inertial coefficient are derived from experimental results. Finally, a pressure drop relation is proposed for fibrous beds. Convective boiling phenomena, with emphasis to application on bottom injection, are experimentally determined for fibrous porous media. Temperature field determination evidences the formation of three distinct zones in the porous medium: a liquid zone, a two-phase zone and a superheated zone. For higher heat flux density, a fourth zone is found in which vapour and liquid are in thermal non-equilibrium. A one-dimensional analytical model of pressure drop in two-phase configuration has been performed. Comparisons with experimental data are found in good agreement with the results of this model for moderate heat fluxes. For higher heat flux values, discrepancies are found. These cases correspond to the appearance and the evolution of the thermal non-equilibrium two-phase zone. Heat transfer characteristics at the heated walls are analysed. Formation of vapour in the neighbourhood of the heated walls has a strong influence on the heat transfer coefficient. This behaviour may be related to the critical heat flux phenomenon encountered in usual ducts.

[1]  J. Milewski The Combined Packing of Rods and Spheres in Reinforcing Plastics , 1978 .

[2]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[3]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[4]  Chao-Yang Wang,et al.  A FIXED-GRID NUMERICAL ALGORITHM FOR TWO-PHASE FLOW AND HEAT TRANSFER IN POROUS MEDIA , 1997 .

[5]  Kent S. Udell,et al.  Heat transfer in porous media considering phase change and capillarity—the heat pipe effect , 1985 .

[6]  Vijay K. Dhir,et al.  Finite element solution of multi-dimensional two-phase flow through porous media with arbitrary heating conditions , 1990 .

[7]  S. B. Nasrallah,et al.  Étude numérique de l'ébullition en convection mixte dans une couche poreuse verticale , 2002 .

[8]  K. Udell,et al.  Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects , 1983 .

[9]  R. Mahajan,et al.  Thermophysical properties of high porosity metal foams , 2002 .

[10]  Philippe C. Baveye,et al.  The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifers , 1984 .

[11]  F. Topin,et al.  MODELING OF COUPLED HEAT AND MASS TRANSFERS WITH PHASE CHANGE IN A POROUS MEDIUM: APPLICATION TO SUPERHEATED STEAM DRYING , 1998 .

[12]  Darsh T. Wasan,et al.  Flow of Single-Phase Fluids through Fibrous Beds , 1970 .

[13]  Patrick Perré,et al.  Advances in transport phenomena during convective drying with superheated steam and moist air , 1993 .

[14]  C. Moyne Transferts couples chaleur-masse lors du séchage : prise en compte du mouvement de la phase gazeuse , 1987 .

[15]  B. Jerome Transition boiling heat transfer from a horizontal surface , 1960 .

[16]  Shoichiro Fukusako,et al.  An Experimental Study of Transition and Film Boiling Heat Transfer in Liquid-Saturated Porous Bed , 1986 .

[17]  Marc Miscevic,et al.  Etude expérimentale des écoulements darcéens à travers un lit de fibres rigides empilées aléatoirement : influence de la porosité , 1995 .

[18]  S. Lee A numerical investigation of nematic ordering based on a simple hard-rod model , 1987 .

[19]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[20]  A. Dukler,et al.  Frictional pressure drop in two‐phase flow: A. A comparison of existing correlations for pressure loss and holdup , 1964 .

[21]  D. Turcotte,et al.  An experimental study of two‐phase convection in a porous medium with applications to geological problems , 1977 .

[22]  J. P. Hartnett,et al.  Advances in Heat Transfer , 2003 .

[23]  V. Dhir,et al.  Forced-flow evaporative cooling of a volumetrically heated porous layer. [LMFBR] , 1982 .

[24]  N. Standish,et al.  Porosity calculations of multi-component mixtures of spherical particles , 1987 .

[25]  Modélisation des transferts couplés de chaleur et de masse avec changement de phase en milieux poreux: Application au séchage en vapeur d'eau surchauffée , 1997 .

[26]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[27]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[28]  Vijay K. Dhir,et al.  Dryout Heat Fluxes for Inductively Heated Particulate Beds , 1977 .

[29]  M. Nardin,et al.  Contributiona`l'etude des empilements au hasard de fibres et/ou de particules sphe´riques , 1985 .

[30]  R. McGeary,et al.  Mechanical Packing of Spherical Particles , 1961 .

[31]  Massoud Kaviany,et al.  Slip and no-slip velocity boundary conditions at interface of porous, plain media , 1992 .

[32]  O. K. Rice On the Statistical Mechanics of Liquids, and the Gas of Hard Elastic Spheres , 1944 .

[33]  D. C. Groeneveld,et al.  Prediction of thermal non-equilibrium in the post-dryout regime , 1976 .

[34]  J. Thome,et al.  Convective Boiling and Condensation , 1972 .

[35]  L. Vasiliev,et al.  An analytical study of resistance, heat transfer and stability in evaporative cooling of a porous heat-producing element , 1979 .

[36]  L. Tadrist,et al.  Fluid Flow Through Randomly Packed Monodisperse Fibers: The Kozeny-Carman Parameter Analysis , 1997 .

[37]  Devarakonda Angirasa,et al.  Experimental investigation of forced convection heat transfer augmentation with metallic fibrous materials , 2002 .

[38]  S. Ergun Fluid flow through packed columns , 1952 .

[39]  D. Caillerie,et al.  Quelques remarques sur les méthodes d’homogénéisation , 1989 .

[40]  I. Turner,et al.  STUDY OF TWO-DIMENSIONAL CELL-CENTERED AND VERTEX-CENTERED CONTROL-VOLUME SCHEMES APPLIED TO HIGH-TEMPERATURE TIMBER DRYING , 1995 .

[41]  R. Rutgers,et al.  Packing of Spheres , 1962, Nature.

[42]  Y. Katto General features of CHF of forced convection boiling in uniformly heated rectangular channels , 1981 .

[43]  P. Whalley,et al.  A Simple Two-Phase Frictional Pressure Drop Calculation Method , 1982 .

[44]  Etienne Guyon,et al.  Du sac de billes au tas de sable , 1994 .

[45]  G. D. Scott,et al.  Packing of Spheres: Packing of Equal Spheres , 1960, Nature.

[46]  Étienne Décossin Ébullition et assèchement dans un lit de particules avec production interne de chaleur : premières expériences et simulations numériques en situation multidimensionnelle , 2000 .

[47]  A. E. R. Westman,et al.  THE PACKING OF PARTICLES1 , 1930 .

[48]  Vijay K. Dhir,et al.  A hydrodynamic model for two-phase flow through porous media , 1988 .

[49]  W. Rouse Microclimate at Arctic Tree Line 3. The Effects of Regional Advection on the Surface Energy Balance of Upland Tundra , 1984 .

[50]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[51]  F. Topin,et al.  Experimental Study of Convective Boiling in a Porous Medium: Temperature Field Analysis , 1996 .

[52]  F. Topin,et al.  Analysis of heat transfer with liquid-vapor phase change in a forced-flow fluid moving through porous media , 1996 .

[53]  P. Carman Fluid flow through granular beds , 1997 .

[54]  Charles-Michel Marle,et al.  On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media , 1982 .

[55]  Fabien Duval,et al.  Modélisation du renoyage d'un lit de particules : contribution à l'estimation des propriétés de transport macroscopiques , 2002 .

[56]  D. F. James,et al.  The permeability of fibrous porous media , 1986 .