Precipitation Retrievals from Satellite Combined Radar and Radiometer Observations

This chapter provides a unified perspective on a broad class of approaches to derive precipitation estimates from satellite combined radar and radiometer observations based on the optimal estimation theory. These approaches are based on the optimal estimation theory and are numerical equivalent to an optimization problem. Irrespective of the procedure used to address the optimization, challenges related to mismatch between the large mismatches between the radar and radiometer footprint sizes, the ill-posed character of the mathematical problem and errors in the forward models need to be effectively mitigated. Approaches used in the TRMM and GPM combined algorithms as well as their benefits and limitations are discussed in the chapter. Aspects requiring improvement and potential solutions are also presented in the chapter.

[1]  Jeffrey A. Jones,et al.  Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar , 2000 .

[2]  Robert A. Black,et al.  The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing , 2001 .

[3]  S. Joseph Munchak,et al.  A Modular Optimal Estimation Method for Combined Radar–Radiometer Precipitation Profiling , 2011 .

[4]  Christian D. Kummerow,et al.  Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval Algorithm , 2005 .

[5]  Eric A. Smith,et al.  Estimating 13.8-GHz Path-Integrated Attenuation from 10.7-GHz Brightness Temperatures for the TRMM Combined PR-TMI Precipitation Algorithm. , 1997 .

[6]  Christian D. Kummerow,et al.  An Observationally Generated A Priori Database for Microwave Rainfall Retrievals , 2011 .

[7]  Clemens Simmer,et al.  Evaluation of Radar Multiple-Scattering Effects from a GPM Perspective. Part I: Model Description and Validation , 2006 .

[8]  Jacques Testud,et al.  Study and Tests of Improved Rain Estimates from the TRMM Precipitation Radar , 2001 .

[9]  Jeff W. Brogden,et al.  Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities , 2016 .

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  Jeffrey A. Jones,et al.  An Initial Assessment of the Surface Reference Technique Applied to Data from the Dual-Frequency Precipitation Radar (DPR) on the GPM Satellite , 2015 .

[12]  A. Doicu,et al.  Regularization of inverse problems in atmospheric remote sensing , 2011 .

[13]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[14]  P. T. Willis,et al.  Functional fits to some observed drop size distributions and parameterization of rain , 1984 .

[15]  Christian D. Kummerow,et al.  Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans , 2008 .

[16]  G. Huffman,et al.  A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms , 1998 .

[17]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[18]  Simone Tanelli,et al.  A Robust Dual-Frequency Radar Profiling Algorithm , 2011 .

[19]  D. Moisseev,et al.  Advection-Based Adjustment of Radar Measurements , 2012 .

[20]  Fuzhong Weng,et al.  Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager , 1997 .

[21]  Robert Meneghini,et al.  Retrieval of Precipitation Profiles from Airborne Radar and Passive Radiometer Measurements: Comparison with Dual-Frequency Radar Measurements , 1990 .

[22]  D. Short,et al.  Reduction of Nonuniform Beamfilling Effects by Multiple Constraints: A Simulation Study , 2015 .

[23]  E. Anagnostou,et al.  Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations , 2004 .

[24]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[25]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[26]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[27]  Ziad S. Haddad,et al.  The TRMM 'Day-1' Radar/Radiometer Combined Rain-Profiling Algorithm , 1997 .

[28]  Ziad S. Haddad,et al.  The GPM Combined Algorithm , 2016 .

[29]  Calyampudi R. Rao,et al.  Statistics and Truth Putting Chance to Work , 1989 .

[30]  Toshio Iguchi,et al.  GPM/DPR Level-2 Algorithm Theoretical Basis Document , 2010 .

[31]  E. Anagnostou,et al.  Real-Time Radar Rainfall Estimation. Part I: Algorithm Formulation , 1999 .

[32]  Riko Oki,et al.  THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION FOR SCIENCE AND SOCIETY. , 2017, Bulletin of the American Meteorological Society.

[33]  Robert Meneghini,et al.  Intercomparison of Single-Frequency Methods for Retrieving a Vertical Rain Profile from Airborne or Spaceborne Radar Data , 1994 .

[34]  Alessandro Battaglia,et al.  Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation , 2008 .

[35]  William S. Olson,et al.  Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar–Radiometer Retrievals , 2006 .

[36]  C. Naud,et al.  Observational Constraint for Precipitation in Extratropical Cyclones: sensitivity to data sources , 2018 .

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..