The GH67 α-glucuronidase of Paenibacillus curdlanolyticus B-6 removes hexenuronic acid groups and facilitates biodegradation of the model xylooligosaccharide hexenuronosyl xylotriose.

[1]  T. Satake,et al.  Screening of enzyme system for specific degradation of hexenuronosyl-xylotriose , 2012 .

[2]  H. Ohi,et al.  Differential behavior between acacia and Japanese larch woods in the formation and decomposition of hexenuronic acid during alkaline cooking , 2011, Journal of Wood Science.

[3]  J. F. Colom,et al.  Comparing the efficiency of the laccase-NHA and laccase-HBT systems in eucalyptus pulp bleaching , 2010 .

[4]  T. Vidal,et al.  Influence of the hexenuronic acid content on refining and ageing in eucalyptus TCF pulp. , 2010, Bioresource technology.

[5]  Cristina Valls,et al.  The role of xylanases and laccases on hexenuronic acid and lignin removal , 2010 .

[6]  Cristina Valls,et al.  Using both xylanase and laccase enzymes for pulp bleaching. , 2009, Bioresource technology.

[7]  Y. Murata,et al.  Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6 , 2009, Applied Microbiology and Biotechnology.

[8]  P. Pason,et al.  Paenibacillus curdlanolyticus Strain B-6 Xylanolytic-Cellulolytic Enzyme System That Degrades Insoluble Polysaccharides , 2006, Applied and Environmental Microbiology.

[9]  José A. Castro,et al.  Evolution of Methylglucuronic and Hexenuronic Acid Contents of Eucalyptus globulus Pulp during Kraft Delignification , 2005 .

[10]  G. Shoham,et al.  Effect of Dimer Dissociation on Activity and Thermostability of the α-Glucuronidase from Geobacillus stearothermophilus: Dissecting the Different Oligomeric Forms of Family 67 Glycoside Hydrolases , 2004, Journal of bacteriology.

[11]  A. A. Shatalov,et al.  Uronic (hexenuronic) acid profile of ethanol–alkali delignification of giant reed Arundo donax L. , 2004 .

[12]  V. Stojanoff,et al.  Crystal Structures of Geobacillus stearothermophilus α-Glucuronidase Complexed with Its Substrate and Products , 2004, Journal of Biological Chemistry.

[13]  D. Nurizzo,et al.  The α-Glucuronidase, GlcA67A, of Cellvibrio japonicus Utilizes the Carboxylate and Methyl Groups of Aldobiouronic Acid as Important Substrate Recognition Determinants* , 2003, Journal of Biological Chemistry.

[14]  Armando J. D. Silvestre,et al.  Hexenuronic acid contents of Eucalyptus globulus kraft pulps: Variation with pulping conditions and effect on ECF bleachability , 2003 .

[15]  H. Gilbert,et al.  The Membrane-Bound α-Glucuronidase from Pseudomonas cellulosa Hydrolyzes 4-O-Methyl-d-Glucuronoxylooligosaccharides but Not 4-O-Methyl-d-Glucuronoxylan , 2002, Journal of bacteriology.

[16]  Didier Nurizzo,et al.  The structural basis for catalysis and specificity of the Pseudomonas cellulosa alpha-glucuronidase, GlcA67A. , 2002, Structure.

[17]  G. Shoham,et al.  Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6. , 2001, European journal of biochemistry.

[18]  G. Gellerstedt,et al.  Variables affecting the thermal yellowing of TCF-bleached birch kraft pulps , 2001 .

[19]  M. Vršanská,et al.  Inverting character of α-glucuronidase A from Aspergillus tubingensis , 2000 .

[20]  J. Buchert,et al.  Selective hydrolysis of hexenuronic acid groups and its application in ECF and TCF bleaching of kraft pulps , 1999 .

[21]  Göran Gellerstedt,et al.  On the structural significance of the kappa number measurement , 1998 .

[22]  J. Visser,et al.  aguA, the Gene Encoding an Extracellular α-Glucuronidase from Aspergillus tubingensis, Is Specifically Induced on Xylose and Not on Glucuronic Acid , 1998, Journal of bacteriology.

[23]  S. Stocker,et al.  alpha-D-glucuronidases from the xylanolytic thermophiles Clostridium stercorarium and Thermoanaerobacterium saccharolyticum. , 1995, Microbiology.

[24]  J. Buchert,et al.  Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp , 1995 .

[25]  T. Wood,et al.  METHODS FOR MEASURING CELLULASE ACTIVITIES , 1988 .

[26]  J. Königstein,et al.  Alkaline degradation of model compounds related to (4-O-methyl-d-glucurono)-d-xylan , 1986 .

[27]  M. H. Johansson,et al.  Epimerization and degradation of 2-O-(4-O-methyl-α-d-glucopyranosyluronic acid)-d-xylitol in alkaline medium , 1977 .

[28]  G. Pettersson,et al.  Growth and cellulase formation by Cellvibrio fulvus. , 1972, The Journal of applied bacteriology.

[29]  Y. Milner,et al.  A copper reagent for the determination of hexuronic acids and certain ketohexoses , 1967 .

[30]  L. Warren Thiobarbituric Acid Spray Reagent for Deoxy Sugars and Sialic Acids , 1960, Nature.

[31]  Norton Nelson,et al.  A PHOTOMETRIC ADAPTATION OF THE SOMOGYI METHOD FOR THE DETERMINATION OF GLUCOSE , 1944 .