Void evolution in tungsten and tungsten-5wt.% tantalum under in-situ proton irradiation at 800 and 1000 °C

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  M. Downey,et al.  Neutron irradiation damage in molybdenum , 1965 .

[3]  J. P. Smith,et al.  Stage III recovery in neutron irradiated tungsten , 1967 .

[4]  J. Galligan,et al.  Dislocation Loops in Neutron Irradiated Tungsten , 1969 .

[5]  L. K. Keys,et al.  Neutron irradiation and defect recovery of tungsten , 1970 .

[6]  D. Norris The use of the high voltage electron microscope to simulate fast neutron-induced void swelling in metals , 1971 .

[7]  V. Sikka,et al.  Superlattice of voids in neutron‐irradiated tungsten , 1972 .

[8]  V. Sikka,et al.  “Rafting” in neutron irradiated tungsten , 1973 .

[9]  J. Sprague,et al.  Suppression of void nucleation by a vacancy trapping mechanism , 1973 .

[10]  B. N. Singh,et al.  On the influence of grain boundaries on void growth , 1973 .

[11]  J. Moteff,et al.  Swelling in neutron irradiated tungsten and tungsten-25 percent rhenium , 1974 .

[12]  A. G. Crocker,et al.  The interaction between vacancies and the ½〈111〉 {11¯0} edge dislocation in body centred cubic metals , 1978 .

[13]  J. Galligan,et al.  An annealing study of thermal neutron irradiated tungsten , 1978 .

[14]  H. Wiedersich,et al.  Effects of solute segregation and precipitation on void swelling in irradiated alloys , 1978 .

[15]  K. Krishan,et al.  Mechanisms for radiation-induced shrinkage of voids , 1979, Nature.

[16]  D. Seidman On the point-defect annealing mechanism for stage III recovery in irradiated or quenched tungsten☆ , 1979 .

[17]  I. Gorynin,et al.  Effects of neutron irradiation on properties of refractory metals , 1992 .

[18]  J. Ziegler Stopping of energetic light ions in elemental matter , 1999 .

[19]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[20]  S. Zinkle,et al.  Operating temperature windows for fusion reactor structural materials , 2000 .

[21]  M. Jenkins,et al.  Characterisation of Radiation Damage by Transmission Electron Microscopy , 2000 .

[22]  P. Turchi,et al.  First-principles study of stability and local order in substitutional Ta-W alloys , 2001 .

[23]  C. Woo,et al.  Void nucleation at elevated temperatures under cascade-damage irradiation , 2002 .

[24]  J. Roth,et al.  Plasma facing and high heat flux materials-needs for ITER and beyond , 2002 .

[25]  P. Gumbsch Brittle fracture and the brittle-to-ductile transition of tungsten , 2003 .

[26]  D. Pettifor,et al.  Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten , 2008 .

[27]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[28]  B. Gludovatz,et al.  Fracture Toughness of Polycrystalline Tungsten Alloys , 2010 .

[29]  A. Wilkinson,et al.  Mechanical properties of ion-implanted tungsten–5 wt% tantalum , 2011 .

[30]  J. Linke,et al.  Performance of different tungsten grades under transient thermal loads , 2011 .

[31]  A. Hasegawa,et al.  Microstructure Development in Neutron Irradiated Tungsten Alloys , 2011 .

[32]  J. Berg,et al.  MIAMI: Microscope and ion accelerator for materials investigations , 2011 .

[33]  S. Brezinsek,et al.  Plasma Facing Materials for the JET ITER-Like Wall , 2012 .

[34]  Zhongfu Zhou,et al.  In situ study of self-ion irradiation damage in W and W–5Re at 500 °C , 2013 .

[35]  Huijun Li,et al.  A brief summary of the progress on the EFDA tungsten materials program , 2013 .

[36]  T. Muroga,et al.  Multimodal options for materials research to advance the basis for fusion energy in the ITER era , 2013 .

[37]  S. Podda,et al.  Nuclear analysis of the ITER full-tungsten divertor , 2013 .

[38]  G. Oost,et al.  Surface modification of tungsten and tungsten–tantalum alloys exposed to high-flux deuterium plasma and its impact on deuterium retention , 2013 .

[39]  Huijun Li,et al.  Recent progress in research on tungsten materials for nuclear fusion applications in Europe , 2013 .

[40]  Eliseo Visca,et al.  Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor , 2013 .

[41]  Teruya Tanaka,et al.  Microstructural development of tungsten and tungsten–rhenium alloys due to neutron irradiation in HFIR , 2014 .

[42]  D. Rupp,et al.  Fracture behaviour of polycrystalline tungsten , 2014 .

[43]  Q. Fang,et al.  First-principles calculations of transition metal–solute interactions with point defects in tungsten , 2014 .

[44]  A. Hasegawa,et al.  Neutron irradiation effects on tungsten materials , 2014 .

[45]  Francesco Ferroni,et al.  High temperature annealing of ion irradiated tungsten , 2015 .

[46]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[47]  P. Edmondson,et al.  Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations , 2015 .

[48]  Long-Qing Chen,et al.  Effects of surface energy anisotropy on void evolution during irradiation: A phase-field model , 2016 .

[49]  B. Wirth,et al.  Irradiation hardening of pure tungsten exposed to neutron irradiation , 2016 .

[50]  M. Merola,et al.  Use of Tungsten Material for the ITER Divertor , 2016 .

[51]  Haiqing Wan,et al.  The effect of tantalum (Ta) doping on mechanical properties of tungsten (W): A first-principles study , 2016 .

[52]  T. Shen,et al.  Microstructure and tensile properties of tungsten at elevated temperatures , 2016 .

[53]  Y. Katoh,et al.  Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum , 2017 .

[54]  R. Abernethy Predicting the performance of tungsten in a fusion environment: a literature review , 2017 .

[55]  Neutron Radiation Damage Simulation by Charged-Particle Irradiation , 2017 .

[56]  R. Harrison,et al.  A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten , 2017 .

[57]  G. Smith,et al.  Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study , 2017 .

[58]  Z. Wang,et al.  Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys , 2017 .

[59]  R. Harrison,et al.  Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage , 2017 .

[60]  J. Contributors,et al.  Overview of the JET ITER-like wall divertor , 2017 .

[61]  Francesco Ferroni,et al.  A study of helium bubble production in 10 keV He+ irradiated tungsten , 2017 .

[62]  R. Harrison,et al.  Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalum , 2017 .

[63]  G. Nandipati,et al.  Ab initio study of interstitial cluster interaction with Re, Os, and Ta in W , 2017 .

[64]  E. Martínez,et al.  Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size , 2018 .

[65]  Iain Todd,et al.  Refractory metals as structural materials for fusion high heat flux components , 2018, Journal of Nuclear Materials.

[66]  C. Linsmeier,et al.  Aiming at understanding thermo-mechanical loads in the first wall of DEMO: Stress–strain evolution in a Eurofer-tungsten test component featuring a functionally graded interlayer , 2018, Fusion Engineering and Design.

[67]  Francesco Ferroni,et al.  High-temperature defect recovery in self-ion irradiated W-5 wt% Ta , 2019, Nuclear Materials and Energy.

[68]  Y. Katoh,et al.  Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum , 2019, Acta Materialia.

[69]  R. Harrison On the use of ion beams to emulate the neutron irradiation behaviour of tungsten , 2019, Vacuum.

[70]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[71]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[72]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[73]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[74]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.