Extending the supramolecular synthon based fragment approach (SBFA) for transferability of multipole charge density parameters to monofluorobenzoic acids and their cocrystals with isonicotinamide: importance of C-H···O, C-H···F, and F···F intermolecular regions.

An extension of the supramolecular synthon-based fragment approach (SBFA) method for transferability of multipole charge density parameters to include weak supramolecular synthons is proposed. In particular, the SBFA method is applied to C-H···O, C-H···F, and F···F containing synthons. A high resolution charge density study has been performed on 4-fluorobenzoic acid to build a synthon library for C-H···F infinite chain interactions. Libraries for C-H···O and F···F synthons were taken from earlier work. The SBFA methodology was applied successfully to 2- and 3-fluorobenzoic acids, data sets for which were collected in a routine manner at 100 K, and the modularity of the synthons was demonstrated. Cocrystals of isonicotinamide with all three fluorobenzoic acids were also studied with the SBFA method. The topological analysis of inter- and intramolecular interaction regions was performed using Bader's AIM approach. This study shows that the SBFA method is generally applicable to generate charge density maps using information from multiple intermolecular regions.

[1]  Roberto Dovesi,et al.  Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4 , 2011, J. Comput. Chem..

[2]  T. Row,et al.  Role of organic fluorine in crystal engineering , 2011 .

[3]  T. Row,et al.  Charge Density Analysis of Heterohalogen (Cl···F) and Homohalogen (F···F) Intermolecular Interactions in Molecular Crystals: Importance of the Extent of Polarizability , 2011 .

[4]  Tejender S. Thakur,et al.  Transferability of Multipole Charge Density Parameters for Supramolecular Synthons: A New Tool for Quantitative Crystal Engineering , 2011 .

[5]  Tejender S. Thakur,et al.  C–H⋯F–C hydrogen bonding in 1,2,3,5-tetrafluorobenzene and other fluoroaromatic compounds and the crystal structure of alloxan revisited , 2010 .

[6]  T. Row,et al.  Charge Density Analysis of Crystals of Nicotinamide with Salicylic Acid and Oxalic Acid: An Insight into the Salt to Cocrystal Continuum , 2010 .

[7]  B. Dittrich,et al.  Towards extracting the charge density from normal-resolution data , 2009 .

[8]  K. Woźniak,et al.  Towards the best model for H atoms in experimental charge-density refinement. , 2009, Acta crystallographica. Section A, Foundations of crystallography.

[9]  P. Coppens,et al.  Combining crystallographic information and an aspherical-atom data bank in the evaluation of the electrostatic interaction energy in an enzyme-substrate complex: influenza neuraminidase inhibition. , 2009, Acta crystallographica. Section D, Biological crystallography.

[10]  A. Madsen,et al.  Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Claude Lecomte,et al.  Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case. , 2008, Acta crystallographica. Section D, Biological crystallography.

[12]  C. Lecomte,et al.  Ultrahigh-resolution crystallography and related electron density and electrostatic properties in proteins , 2008, Journal of synchrotron radiation.

[13]  David O'Hagan,et al.  Understanding organofluorine chemistry. An introduction to the C-F bond. , 2008, Chemical Society reviews.

[14]  Gautam R Desiraju,et al.  Crystal engineering: a holistic view. , 2007, Angewandte Chemie.

[15]  M. Spackman,et al.  Redetermination, invariom-model and multipole refinement of L-ornithine hydrochloride. , 2007, Acta crystallographica. Section B, Structural science.

[16]  B. Dittrich,et al.  Automation of invariom and of experimental charge density modelling of organic molecules with the preprocessor program InvariomTool , 2007 .

[17]  Tejender S. Thakur,et al.  Theoretical investigation of C-H···M interactions in organometallic complexes: a natural bond orbital (NBO) study , 2007 .

[18]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[19]  C. Lecomte,et al.  On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Marc Messerschmidt,et al.  Improving the scattering-factor formalism in protein refinement: application of the University at Buffalo Aspherical-Atom Databank to polypeptide structures. , 2007, Acta crystallographica. Section D, Biological crystallography.

[21]  M. Spackman,et al.  Introduction and validation of an invariom database for amino-acid, peptide and protein molecules. , 2006, Acta crystallographica. Section D, Biological crystallography.

[22]  A. Madsen SHADE web server for estimation of hydrogen anisotropic displacement parameters , 2006 .

[23]  M. Spackman,et al.  Invarioms for improved absolute structure determination of light-atom crystal structures. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[24]  Philip Coppens,et al.  Charge densities come of age. , 2005, Angewandte Chemie.

[25]  T. Row,et al.  Charge density based classification of intermolecular interactions in molecular crystals , 2005 .

[26]  T. N. Guru Row,et al.  Exploring the lower limit in hydrogen bonds: analysis of weak C-H...O and C-H...pi interactions in substituted coumarins from charge density analysis. , 2005, The journal of physical chemistry. A.

[27]  Philip Coppens,et al.  Ab Initio Quality Electrostatic Atomic and Molecular Properties Including Intermolecular Energies from a Transferable Theoretical Pseudoatom Databank , 2004 .

[28]  W. Scherer,et al.  Agostic interactions in d0 metal alkyl complexes. , 2004, Angewandte Chemie.

[29]  C. Aakeröy,et al.  Heteromeric intermolecular interactions as synthetic tools for the formation of binary co-crystals , 2004 .

[30]  S. Larsen,et al.  Charge Density Study of Naphthalene Based on X-ray Diffraction Data at Four Different Temperatures and Theoretical Calculations , 2004 .

[31]  Chick C. Wilson,et al.  From weak interactions to covalent bonds: a continuum in the complexes of 1,8-bis(dimethylamino)naphthalene. , 2003, Journal of the American Chemical Society.

[32]  B. Harvey,et al.  Investigation of Zr-C, Zr-N, and potential agostic interactions in an organozirconium complex by experimental electron density analysis. , 2003, Journal of the American Chemical Society.

[33]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[34]  P. Coppens,et al.  Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to I-. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[35]  P. Luger,et al.  Charge Density and Topological Analysis of Pentafluorobenzoic Acid , 2001 .

[36]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[37]  P. Coppens,et al.  Anisotropic atom–atom potentials from X-ray charge densities: application to intermolecular interactions and lattice energies in some biological and nonlinear optical materials , 2000 .

[38]  Guang Wu,et al.  Use of X-ray Charge Densities in the Calculation of Intermolecular Interactions and Lattice Energies: Application to Glycylglycine, dl-Histidine, and dl-Proline and Comparison with Theory , 2000 .

[39]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[40]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[41]  A Aubry,et al.  Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures. , 1998, Acta crystallographica. Section D, Biological crystallography.

[42]  P. Coppens,et al.  Nonlinear Least‐Squares Fitting of Numerical Relativistic Atomic Wave Functions by a Linear Combination of Slater‐Type Functions for Atoms with Z = 1–36 , 1998 .

[43]  R. Bader,et al.  A Bond Path: A Universal Indicator of Bonded Interactions , 1998 .

[44]  G. Desiraju,et al.  C−H···F Interactions in the Crystal Structures of Some Fluorobenzenes , 1998 .

[45]  P. Popelier,et al.  Characterization of an agostic bond on the basis of the electron density , 1998 .

[46]  K. Woźniak,et al.  A Charge Density Analysis of Cationic and Anionic Hydrogen Bonds in a “Proton Sponge” Complex , 1997 .

[47]  R. Blessing Outlier Treatment in Data Merging , 1997 .

[48]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[49]  J. Howard,et al.  How good is fluorine as a hydrogen bond acceptor , 1996 .

[50]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[51]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[52]  Claude Lecomte,et al.  On Building a Data Bank of Transferable Experimental Electron Density Parameters Applicable to Polypeptides , 1995 .

[53]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[54]  S. Ohba,et al.  Electron-density distribution in fluorobenzene derivatives , 1992 .

[55]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[56]  Paul L. A. Popelier,et al.  THE EXISTENCE OF AN INTRAMOLECULAR C-H-O HYDROGEN-BOND IN CREATINE AND CARBAMOYL SARCOSINE , 1992 .

[57]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[58]  F. H. Allen,et al.  A systematic pairwise comparison of geometric parameters obtained by X-ray and neutron diffraction , 1986 .

[59]  C. Faerman,et al.  A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, Cl, Se, Br and I bonded to carbon , 1985 .

[60]  W. Wong-Ng,et al.  Anisotropic atom–atom forces and the space group of solid chlorine , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  S. C. Nyburg `Polar flattening': non-spherical effective shapes of atoms in crystals , 1979 .

[62]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[63]  F. L. Hirshfeld Can X‐ray data distinguish bonding effects from vibrational smearing? , 1976 .

[64]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[65]  T. Row,et al.  Evaluation of the interchangeability of C–H and C–F groups: insights from crystal packing in a series of isomeric fluorinated benzanilides , 2008 .

[66]  Marc Messerschmidt,et al.  A Theoretical Databank of Transferable Aspherical Atoms and Its Application to Electrostatic Interaction Energy Calculations of Macromolecules. , 2007, Journal of chemical theory and computation.

[67]  A. Guy Orpen,et al.  Metal-bound chlorine often accepts hydrogen bonds , 1998 .

[68]  Robin Taylor,et al.  Organic Fluorine Hardly Ever Accepts Hydrogen Bonds , 1997 .