Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy

This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element method and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with maximum global convergence order of O ( τ + h r +1 )in the L 2 norm, where τ and h are the step sizes in time and space, respectively, and r is the degree of the piecewise polynomial space. The average convergence rates for the two methods in time are also investigated, which shows that the average convergence rates of the two methods are O ( τ 1 . 5 + h r +1 ). Furthermore, two improved algorithms are constructed, and they are also unconditionally stable and convergent of order O ( τ 2 + h r +1 ). Numerical examples are provided to verify the theoretical analysis. Comparisons between the present algorithms and the existing ones are included, showing that our numerical algorithms exhibit better performances than the known ones.

[1]  C. Lubich Discretized fractional calculus , 1986 .

[2]  Alfredo Raúl Carella,et al.  Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation , 2013, J. Comput. Phys..

[3]  Changpin Li,et al.  Fractional difference/finite element approximations for the time-space fractional telegraph equation , 2012, Appl. Math. Comput..

[4]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[5]  Changpin Li,et al.  Finite difference Methods for fractional differential equations , 2012, Int. J. Bifurc. Chaos.

[6]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[7]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[8]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[9]  Ercília Sousa,et al.  A second order explicit finite difference method for the fractional advection diffusion equation , 2012, Comput. Math. Appl..

[10]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[11]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  S. Karimi Vanani,et al.  Tau approximate solution of fractional partial differential equations , 2011, Comput. Math. Appl..

[13]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[14]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[15]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[16]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[17]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[18]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[19]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[20]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[21]  I. Podlubny Fractional differential equations , 1998 .

[22]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  Arvet Pedas,et al.  On the convergence of spline collocation methods for solving fractional differential equations , 2011, J. Comput. Appl. Math..

[25]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[26]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[27]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[28]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[29]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..

[30]  Hong Wang,et al.  Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..

[31]  Yubin Yan,et al.  A finite element method for time fractional partial differential equations , 2011 .

[32]  Changpin Li,et al.  A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..

[33]  N. Ford,et al.  Pitfalls in fast numerical solvers for fractional differential equations , 2006 .

[34]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[35]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[36]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[37]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[38]  Hong Wang,et al.  A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .

[39]  Shaher Momani,et al.  Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations , 2007, Comput. Math. Appl..

[40]  Om P. Agrawal,et al.  Response of a diffusion‐wave system subjected to deterministic and stochastic fields , 2003 .

[41]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[42]  Treena S. Basu,et al.  A FAST SECOND-ORDER FINITE DIFFERENCE METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS , 2012 .

[43]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[44]  Changpin Li,et al.  Mixed spline function method for reaction-subdiffusion equations , 2013, J. Comput. Phys..

[45]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[46]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[47]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[48]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[49]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[50]  J. Rogers Chaos , 1876 .

[51]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[52]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[53]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[54]  Roberto Garrappa,et al.  Explicit methods for fractional differential equations and their stability properties , 2009 .