Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy
暂无分享,去创建一个
Fawang Liu | Changpin Li | Ian W. Turner | Fanhai Zeng | Fanhai Zeng | I. Turner | Fawang Liu | Changpin Li
[1] C. Lubich. Discretized fractional calculus , 1986 .
[2] Alfredo Raúl Carella,et al. Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation , 2013, J. Comput. Phys..
[3] Changpin Li,et al. Fractional difference/finite element approximations for the time-space fractional telegraph equation , 2012, Appl. Math. Comput..
[4] Ya-Nan Zhang,et al. Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..
[5] Changpin Li,et al. Finite difference Methods for fractional differential equations , 2012, Int. J. Bifurc. Chaos.
[6] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[7] Jingtang Ma,et al. High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..
[8] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[9] Ercília Sousa,et al. A second order explicit finite difference method for the fractional advection diffusion equation , 2012, Comput. Math. Appl..
[10] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[11] Barkai,et al. From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[12] S. Karimi Vanani,et al. Tau approximate solution of fractional partial differential equations , 2011, Comput. Math. Appl..
[13] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[14] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[15] Zhi-Zhong Sun,et al. Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..
[16] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[17] G. Zaslavsky. Chaos, fractional kinetics, and anomalous transport , 2002 .
[18] Xuan Zhao,et al. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..
[19] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[20] Diego A. Murio,et al. Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..
[21] I. Podlubny. Fractional differential equations , 1998 .
[22] Enrico Scalas,et al. Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.
[23] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[24] Arvet Pedas,et al. On the convergence of spline collocation methods for solving fractional differential equations , 2011, J. Comput. Appl. Math..
[25] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[26] Fawang Liu,et al. Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..
[27] Xuan Zhao,et al. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..
[28] Fawang Liu,et al. The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..
[29] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..
[30] Hong Wang,et al. Wellposedness of Variable-Coefficient Conservative Fractional Elliptic Differential Equations , 2013, SIAM J. Numer. Anal..
[31] Yubin Yan,et al. A finite element method for time fractional partial differential equations , 2011 .
[32] Changpin Li,et al. A note on the finite element method for the space-fractional advection diffusion equation , 2010, Comput. Math. Appl..
[33] N. Ford,et al. Pitfalls in fast numerical solvers for fractional differential equations , 2006 .
[34] Eduardo Cuesta,et al. Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..
[35] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[36] Norbert Heuer,et al. Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..
[37] Mark M. Meerschaert,et al. A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..
[38] Hong Wang,et al. A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .
[39] Shaher Momani,et al. Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations , 2007, Comput. Math. Appl..
[40] Om P. Agrawal,et al. Response of a diffusion‐wave system subjected to deterministic and stochastic fields , 2003 .
[41] Yangquan Chen,et al. Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..
[42] Treena S. Basu,et al. A FAST SECOND-ORDER FINITE DIFFERENCE METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS , 2012 .
[43] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[44] Changpin Li,et al. Mixed spline function method for reaction-subdiffusion equations , 2013, J. Comput. Phys..
[45] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[46] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[47] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[48] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[49] J. Hesthaven,et al. Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .
[50] J. Rogers. Chaos , 1876 .
[51] R. Magin. Fractional Calculus in Bioengineering , 2006 .
[52] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[53] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[54] Roberto Garrappa,et al. Explicit methods for fractional differential equations and their stability properties , 2009 .