Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines.

A working partnership: Metal-ligand cooperativity is responsible for the high activity of the rhodium amido complex 1 in the dehydrogenative coupling of primary alcohols with water, methanol, or amines, including ammonia (see scheme), to give carboxylic acids, methyl carboxylates, or amides, respectively. The catalysis proceeds under mild reaction conditions in the presence of a recyclable hydrogen acceptor A. The multistep mechanism was elucidated by computational methods.

[1]  T. Ikariya,et al.  Aerobic oxidation of alcohols with bifunctional transition-metal catalysts bearing C-N chelate ligands. , 2008, Chemistry, an Asian journal.

[2]  H. Grützmacher,et al.  Ethanol als Wasserstoffdonor in hoch effizienten Transferhydrierungen mit Rhodium(I)-Amidkatalysatoren† , 2008 .

[3]  Jean‐Valère Naubron,et al.  Ethanol as hydrogen donor: highly efficient transfer hydrogenations with rhodium(I) amides. , 2008, Angewandte Chemie.

[4]  H. Grützmacher Kooperierende Liganden in der Katalyse , 2008 .

[5]  H. Grützmacher,et al.  Cooperating ligands in catalysis. , 2008, Angewandte Chemie.

[6]  Jonathan M. J. Williams,et al.  Oxidation of primary alcohols to methyl esters by hydrogen transfer. , 2008, Chemical communications.

[7]  David Milstein,et al.  Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2 , 2007, Science.

[8]  Jonathan M. J. Williams,et al.  Oxidation of alcohols by transfer hydrogenation: driving the equilibrium with an intramolecular trap , 2007 .

[9]  N. Raj,et al.  [SbW9O33]-based polyoxometalate combined with a phase transfer catalyst: A highly effective catalyst system for selective oxidation of alcohols with H2O2, and spectroscopic investigation , 2007 .

[10]  Vincenzo Balzani,et al.  Die Zukunft der Energieversorgung – Herausforderungen und Chancen , 2007 .

[11]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[12]  R. W. Hoffmann,et al.  Protecting-group-free synthesis , 2006 .

[13]  Jonathan M. J. Williams,et al.  A novel ruthenium catalysed deracemisation of alcohols. , 2005, Chemical communications.

[14]  H. Grützmacher,et al.  Heterolytische Wasserstoffspaltung mit Rhodium(I)‐amiden , 2005 .

[15]  P. Maire,et al.  Heterolytic splitting of hydrogen with rhodium(I) amides. , 2005, Angewandte Chemie.

[16]  Yehoshoa Ben‐David,et al.  Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. , 2005, Journal of the American Chemical Society.

[17]  T. Katoh,et al.  Tishchenko Reaction Using an Iridium-Ligand Bifunctional Catalyst , 2005 .

[18]  H. Rozenberg,et al.  Electron-Rich, Bulky Ruthenium PNP-Type Complexes. Acceptorless Catalytic Alcohol Dehydrogenation , 2004 .

[19]  A. Spek,et al.  Triruthenium dodecacarbonyl/triphenylphosphine catalyzed dehydrogenation of primary and secondary alcohols , 2004 .

[20]  K. Hiroi,et al.  Mild and chemoselective synthesis of lactones from diols using a novel metal-ligand bifunctional catalyst. , 2002, Organic letters.

[21]  R. Noyori,et al.  Metal-ligand bifunctional catalysis: a nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds. , 2001, The Journal of organic chemistry.

[22]  Y. Maeda,et al.  Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones , 1987 .

[23]  Y. Shvo,et al.  Catalytically reactive (η4-tetracyclone)(CO)2(H)2Ru and related complexes in dehydrogenation of alcohols to esters , 1985 .

[24]  Y. Shvo,et al.  Catalytic oxidation of alcohols to esters with Ru3(CO)12 , 1984 .

[25]  H. Adkins,et al.  The Oxidation Potentials of Aldehydes and Ketones , 1949 .

[26]  J. K.,et al.  Industrial Organic Chemistry , 1938, Nature.