Nuclear fusion control-oriented plasma current linear models

The control of plasma in nuclear fusion has been revealed as a promising application of Control Engineering, with increasing interest in the control community during last years. In this paper it is developed a control-oriented linear model for the control of plasma current. For this purpose, it is provided a summary of the background necessary to deal with control problems in tokamak-based nuclear fusion reactors as it is the case of the future ITER tokamak. Besides, it is also given a review of the most used simulators and plasma models, with the aim of providing an adequate background for control engineers to derive their own control-oriented model or to choose the appropriate existing one. Finally, the proposed plasma model performance is proven in a current drive profile trajectory tracking problem using a modified anti-windup PID-based control scheme.

[1]  Aitor J. Garrido,et al.  Adaptive sensorless robust control of AC drives based on sliding mode control theory , 2007 .

[2]  J. B. Lister,et al.  Improving tokamak vertical position control in the presence of power supply voltage saturation , 2005 .

[3]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[4]  Izaskun Garrido Hernandez,et al.  Neural control of the Wells turbine-generator module , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[5]  A. Thyagaraja,et al.  Transport and structural formation in plasmas , 1999 .

[6]  G. Ambrosino,et al.  Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches , 2005, IEEE Control Systems.

[7]  A. Pironti,et al.  Control of tokamak plasmas. II , 2006, IEEE Control Systems.

[8]  M. Walker,et al.  Control of tokamak plasmas: introduction to a special section , 2005, IEEE Control Systems.

[9]  J. B. Lister,et al.  Plasma equilibrium response modelling and validation on JT-60U , 2002 .

[10]  P. Helander,et al.  Collisional transport in magnetized plasmas , 2002 .

[11]  J. B. Lister,et al.  The separatrix response of diverted TCV plasmas compared with the predictions of the CREATE-L model , 1998 .

[12]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[13]  P. L. Mondino,et al.  The JET magnet power supplies and plasma control systems , 1987 .

[14]  L. L. Lao,et al.  Experimental study of the vertical stability of high decay index plasmas in the DIII-D tokamak , 1990 .

[15]  Imad M. Jaimoukha,et al.  Modeling and control of TCV , 2005, IEEE Transactions on Control Systems Technology.

[16]  Alfredo Pironti,et al.  Control of Tokamak Plasmas Part II Control of Tokamak Plasmas Part II , 2006 .

[17]  J. M. de la Cruz,et al.  Real time current profile control at JET , 1998 .

[18]  J. B. Lister,et al.  Comparing DINA code simulations with TCV experimental plasma equilibrium responses , 2001 .

[19]  Jose B. Cruz,et al.  Feedback systems , 1971 .

[20]  R. R. Khayrutdinov,et al.  Studies of plasma equilibrium and transport in a Tokamak fusion device with the inverse-variable technique , 1993 .

[21]  Aitor J. Garrido,et al.  A SURVEY ON CONTROL-ORIENTED PLASMA PHYSICS IN TOKAMAK REACTORS , 2007 .

[22]  J. B. Lister,et al.  Control of the vertical instability in tokamaks , 1990 .

[23]  J. Lister,et al.  Measurement of the open loop plasma equilibrium response in TCV , 1999 .

[24]  J. Lister,et al.  Comparing TCV experimental VDE responses with DINA code simulations , 2002 .

[25]  L. Zakharov,et al.  Equilibrium of Current-Carrying Plasmas in Toroidal Configurations , 1986 .

[26]  H. Kwakernaak,et al.  Feedback Systems , 2009, Encyclopedia of Database Systems.

[27]  Jesús Antonio Romero González Análisis, modelado y utilización de diagnósticos magnéticos en el control del perfil de corriente en el tokamak JET , 1997 .

[28]  D. Bonvin,et al.  A globally stabilising controller under saturated input for linear planar systems with one unstable pole , 2004, Proceedings of the 2004 American Control Conference.