Pressure sensors based on suspended graphene membranes

A novel pressure sensor based on a suspended graphene membrane is proposed. The sensing mechanism is explained based on tight binding calculations of strain-induced changes in the band structure. A ...

[1]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[2]  Ying Ying Wang,et al.  Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. , 2008, ACS nano.

[3]  Che Ting Chan,et al.  A transferable tight-binding potential for carbon , 1992 .

[4]  K. Novoselov,et al.  Macroscopic graphene membranes and their extraordinary stiffness. , 2008, Nano letters.

[5]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[6]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[7]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[8]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[9]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[10]  A. D. Smith,et al.  Electromechanical piezoresistive sensing in suspended graphene membranes. , 2013, Nano letters.

[11]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[12]  Max C. Lemme,et al.  A Hysteresis-Free High-k Dielectric and Contact Resistance Considerations for Graphene Field Effect Transistors , 2011 .

[13]  J. Maultzsch,et al.  Two-dimensional electronic and vibrational band structure of uniaxially strained graphene from ab initio calculations , 2009 .

[14]  E. Pop,et al.  Mobility and Saturation Velocity in Graphene on SiO2 , 2010, 1005.2711.

[15]  Martin L Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[16]  A. D. Smith,et al.  Strain engineering in suspended graphene devices for pressure sensor applications , 2012, 2012 13th International Conference on Ultimate Integration on Silicon (ULIS).

[17]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[18]  A. Bachtold,et al.  Current-induced cleaning of graphene , 2007, 0709.0607.

[19]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[20]  Chengkuo Lee,et al.  Analytical solutions of sensitivity for pressure microsensors , 2001 .

[21]  Kazuhito Tsukagoshi,et al.  Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars , 2011, 1106.1507.

[22]  L. Colombo,et al.  Gap opening in graphene by shear strain , 2010, 1006.1999.

[23]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[24]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[25]  N. M. R. Peres,et al.  Tight-binding approach to uniaxial strain in graphene , 2008, 0811.4396.

[26]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.