Efficient Implementation of Geometric Integrators for Separable Hamiltonian Problems

We here investigate the efficient implementation of the energy-conserving methods named Hamiltonian Boundary Value Methods (HBVMs) recently introduced for the numerical solution of Hamiltonian problems. In this note, we describe an iterative procedure, based on a triangular splitting, for solving the generated discrete problems, when the problem at hand is separable.

[1]  D. Swart,et al.  UvA-DARE ( Digital Academic Repository ) Parallel Linear System Solvers for Runge-Kutta Methods , 1997 .

[2]  Piet J. van der Houwen,et al.  Parallel linear system solvers for Runge-Kutta methods , 1997, Adv. Comput. Math..

[3]  P. Amodio,et al.  A note on the efficient implementation of implicit methods for ODEs , 1997 .

[4]  L. Brugnano,et al.  Blended implementation of block implicit methods for ODEs , 2002 .

[5]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[6]  F. Iavernaro,et al.  s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .

[7]  L. Brugnano,et al.  Blended implicit methods for solving ODE and DAE problems, and their extension for second-order problems , 2007 .

[8]  F. Iavernaro,et al.  Conservative Block‐Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems , 2008 .

[9]  L. Brugnano,et al.  Recent advances in linear analysis of convergence for splittings for solving ODE problems , 2009 .

[10]  F. Iavernaro,et al.  High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .

[11]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .

[12]  Analisys of Hamiltonian Boundary Value Methods (HBVMs) for the numerical solution of polynomial Hamiltonian dynamical systems , 2009 .

[13]  L. Brugnano,et al.  Hamiltonian BVMs (HBVMs): A Family of "Drift Free" Methods for Integrating polynomial Hamiltonian problems' , 2009 .

[14]  Donato Trigiante,et al.  A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..

[15]  Manuel Calvo,et al.  Energy-preserving methods for Poisson systems , 2012, J. Comput. Appl. Math..

[16]  Luigi Brugnano,et al.  Line integral methods which preserve all invariants of conservative problems , 2012, J. Comput. Appl. Math..

[17]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[18]  L. Brugnano,et al.  Recent advances in the numerical solution of conservative problems , 2012 .

[19]  Donato Trigiante,et al.  The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..

[20]  L. Brugnano,et al.  A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..

[21]  Donato Trigiante,et al.  Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2012, SIAM J. Numer. Anal..

[22]  L. Brugnano,et al.  Efficient implementation of Radau collocation methods , 2013, 1302.1037.

[23]  Luigi Brugnano,et al.  Efficient implementation of Gauss collocation and Hamiltonian boundary value methods , 2013, Numerical Algorithms.

[24]  Donato Trigiante,et al.  Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..