Efficient Implementation of Geometric Integrators for Separable Hamiltonian Problems
暂无分享,去创建一个
[1] D. Swart,et al. UvA-DARE ( Digital Academic Repository ) Parallel Linear System Solvers for Runge-Kutta Methods , 1997 .
[2] Piet J. van der Houwen,et al. Parallel linear system solvers for Runge-Kutta methods , 1997, Adv. Comput. Math..
[3] P. Amodio,et al. A note on the efficient implementation of implicit methods for ODEs , 1997 .
[4] L. Brugnano,et al. Blended implementation of block implicit methods for ODEs , 2002 .
[5] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[6] F. Iavernaro,et al. s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .
[7] L. Brugnano,et al. Blended implicit methods for solving ODE and DAE problems, and their extension for second-order problems , 2007 .
[8] F. Iavernaro,et al. Conservative Block‐Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems , 2008 .
[9] L. Brugnano,et al. Recent advances in linear analysis of convergence for splittings for solving ODE problems , 2009 .
[10] F. Iavernaro,et al. High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .
[11] L. Brugnano,et al. Hamiltonian Boundary Value Methods ( Energy Preserving Discrete Line Integral Methods ) 1 2 , 2009 .
[12] Analisys of Hamiltonian Boundary Value Methods (HBVMs) for the numerical solution of polynomial Hamiltonian dynamical systems , 2009 .
[13] L. Brugnano,et al. Hamiltonian BVMs (HBVMs): A Family of "Drift Free" Methods for Integrating polynomial Hamiltonian problems' , 2009 .
[14] Donato Trigiante,et al. A note on the efficient implementation of Hamiltonian BVMs , 2010, J. Comput. Appl. Math..
[15] Manuel Calvo,et al. Energy-preserving methods for Poisson systems , 2012, J. Comput. Appl. Math..
[16] Luigi Brugnano,et al. Line integral methods which preserve all invariants of conservative problems , 2012, J. Comput. Appl. Math..
[17] M. Aurada,et al. Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.
[18] L. Brugnano,et al. Recent advances in the numerical solution of conservative problems , 2012 .
[19] Donato Trigiante,et al. The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity , 2010, Appl. Math. Comput..
[20] L. Brugnano,et al. A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..
[21] Donato Trigiante,et al. Energy- and Quadratic Invariants-Preserving Integrators Based upon Gauss Collocation Formulae , 2012, SIAM J. Numer. Anal..
[22] L. Brugnano,et al. Efficient implementation of Radau collocation methods , 2013, 1302.1037.
[23] Luigi Brugnano,et al. Efficient implementation of Gauss collocation and Hamiltonian boundary value methods , 2013, Numerical Algorithms.
[24] Donato Trigiante,et al. Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems , 2009, Commun. Nonlinear Sci. Numer. Simul..