Synthesis and Crystal Structure of the High-pressure Iron Borate β-FeB2O4

The iron borate β -FeB2O4 was synthesized under high-pressure / high-temperature conditions of 8 GPa and 1030 ◦C. The structure of β -FeB2O4 is isotypic to HP-NiB2O4, representing the second example of a borate in which every BO4 tetrahedron shares a common edge with a second one. β - FeB2O4 crystallizes in the space group C2/c (Z = 4) with the parameters a = 950.0(2), b = 562.9(2), c = 443.7(1) pm, β = 108.50(3)◦, V = 0.22495(8) nm3, R1 = 0.0293, and wR2 = 0.0647 (all data). The structure consists of layers of BO4 tetrahedra, connected via strings of edge-sharing FeO6 octahedra. A ligand field splitting of Δo ≈8860 cm−1 is estimated from polarized single-crystal electronic absorption spectra of β -FeB2O4. The tetragonal distortion of the ligand field in the [FeIIO6] chromophore amounts to −(8/3)dσ ≈2900 cm−1. In the range of 16000 cm−1 ≤ṽ ≤24000 cm−1, rather strong spin-forbidden transitions within the [FeIIO6] chromophore are observed Graphical Abstract Synthesis and Crystal Structure of the High-pressure Iron Borate β-FeB2O4

[1]  Felix W. Roessner,et al.  High-pressure syntheses and characterization of the transition metal borates β-MB4O7 (M = Mn2+, Ni2+, Cu2+) , 2008 .

[2]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[3]  J. Knyrim,et al.  Bildung kantenverknüpfter BO4‐Tetraeder im Hochdruckborat HP‐NiB2O4 , 2007 .

[4]  G. Heymann,et al.  High-Pressure Synthesis, Crystal Structure, And Properties Of δ-Ce(Bo2)3 , 2007 .

[5]  G. Heymann,et al.  Pr4B10O21: A new composition of rare-earth borates by high-pressure/high-temperature synthesis , 2007 .

[6]  F. Schappacher,et al.  Pressure-Induced Crystallization and Characterization of the Tin Borate β-SnB4O7 , 2007 .

[7]  J. Konzett,et al.  Structural studies on a stuffed framework high pressure polymorph of CaAl2O4 , 2007 .

[8]  J. Knyrim,et al.  Eine neue nicht‐zentrosymmetrische Modifikation von BiB3O6 , 2006 .

[9]  G. Heymann,et al.  δ-La(BO2)3 (≡δ-LaB3O6): A new high-pressure modification of lanthanum meta-oxoborate , 2006 .

[10]  Y. Mascarenhas,et al.  X-ray diffraction single-crystal structure characterization of iron ludwigite from room temperature to 15 K , 2006 .

[11]  H. Huppertz,et al.  High-pressure syntheses of alpha-RE2B4O9 (RE = Sm, Ho), with a structure type displaying edge-sharing BO4 tetrahedra. , 2005, Acta crystallographica. Section C, Crystal structure communications.

[12]  H. Huppertz Multianvil high-pressure / high-temperature synthesis in solid state chemistry , 2004 .

[13]  H. Huppertz,et al.  Preparative and structural extension of oxoborate chemistry through high-pressure/high-temperature syntheses , 2004 .

[14]  Hubert Huppertz,et al.  High-pressure preparation, crystal structure, and properties of alpha-(RE)2B4O9 (RE=Eu, Gd, Tb, Dy): oxoborates displaying a new type of structure with edge-sharing BO4 tetrahedra. , 2003, Chemistry.

[15]  Hubert Huppertz,et al.  Multianvil high-pressure/high-temperature preparation, crystal structure, and properties of the new oxoborate β-ZnB4O7 , 2003 .

[16]  H. Huppertz,et al.  Gd2B4O9: Ein weiteres Oxoborat mit kanten-verknüpften BO4-Tetraedern , 2002 .

[17]  Hubert Huppertz,et al.  Multianvil high-pressure synthesis of Dy(4)B(6)O(15): the first oxoborate with edge-sharing BO(4) tetrahedra. , 2002, Journal of the American Chemical Society.

[18]  K. Parlinski Structural phase transition in FeBO under pressure , 2002 .

[19]  V. A. Sarkisyan,et al.  Equation of state and structural phase transition in FeBO3 at high pressure , 2002 .

[20]  Volker Kahlenberg,et al.  Polymorphism of Strontium Monogallate: The Framework Structures of β-SrGa2O4 and ABW-Type γ-SrGa2O4 , 2000 .

[21]  B. Figgis,et al.  Ligand Field Theory and Its Applications , 1999 .

[22]  D. Rubie Characterising the sample environment in multianvil high-pressure experiments , 1999 .

[23]  L. M. Rodriguez-Martinez,et al.  Synthesis, structure and properties of a semivalent iron oxoborate, Fe2OBO3 , 1999 .

[24]  L. M. Rodriguez-Martinez,et al.  Electrostatically driven charge-ordering in Fe2OBO3 , 1998, Nature.

[25]  J. Attfield,et al.  Magnetic and crystal structures of iron borates , 1992 .

[26]  David Walker,et al.  Lubrication, gasketing, and precision in multianvil experiments , 1991 .

[27]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[28]  M. Carpenter,et al.  Some simplifications to multianvil devices for high pressure experiments , 1990 .

[29]  E. Zobetz Geometrische Größen und einfache Modellrechnungen für BO4-Gruppen , 1990 .

[30]  R. Hoppe,et al.  A new route to charge distributions in ionic solids , 1989 .

[31]  H. Müller-Buschbaum,et al.  Zur Verbindungsbildung MO : M2O3 Eine neue From von BaFe2O4 mit aufgefüllter Tridymitstruktur , 1986 .

[32]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[33]  J. S. Swinnea,et al.  Crystal structure and Mossbauer spectrum of vonsenite, 2FeO . FeBO 3 , 1983 .

[34]  M. Inagaki,et al.  High-pressure modifications of CaAl2O4 and CaGa2O4 , 1980 .

[35]  R. Diehl Crystal structure refinement of ferric borate, FeBO3 , 1975 .

[36]  G. Brandt,et al.  Refinement of the crystal structure of Fe3BO6 , 1975 .

[37]  N. V. Belov,et al.  CRYSTAL-STRUCTURE OF FE, MG-BORATE OF HULSITE (FE2+, MG, FE3+, SN)3BO3O2 , 1975 .

[38]  H. Müller-Buschbaum,et al.  Über Erdalkalimetalloxogallate. V. Die Kristallstruktur von monoklinem CaGa2O4 , 1973 .

[39]  S. Endo,et al.  The Generation of Ultrahigh Hydrostatic Pressures by a Split Sphere Apparatus , 1970 .

[40]  R. Hoppe Die Koordinationszahl — ein „anorganisches Chamäleon”︁ , 1970 .

[41]  J. W. Visser A fully automatic program for finding the unit cell from powder data , 1969 .

[42]  Stuart A. Rice,et al.  Inorganic Electronic Spectroscopy , 1968 .

[43]  A. Miller,et al.  Fe3BO6, a borate isostructural with the mineral norbergite , 1965 .