From onions to broccoli: generalizing Lewis' counterfactual logic

We present a generalization of Segerberg's onion semantics for belief revision, in which the linearity of the spheres need not occur. The resulting logic is called broccoli logic. We provide a minimal relational logic, with a bi-modal neighborhood semantics. We then show that broccoli logic is a well-known conditional logic, the Burgess-Veltman minimal conditional logic.

[1]  Hans Rott,et al.  Change, choice and inference - a study of belief revision and nonmonotonic reasoning , 2001, Oxford logic guides.

[2]  Brian F. Chellas Basic conditional logic , 1975, J. Philos. Log..

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  John Cantwell Non-linear belief revision : Foundations and applications : by John Cantwell , 2000 .

[5]  Krister Segerberg Irrevocable Belief Revision in Dynamic Doxastic Logic , 1998, Notre Dame J. Formal Log..

[6]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[7]  K. Segerberg The Basic Dynamic Doxastic Logic of AGM , 2001 .

[8]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[9]  Krister Segerberg,et al.  Modal logic and philosophy , 2007, Handbook of Modal Logic.

[10]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[11]  John A. Cantwell,et al.  Non-Linear Belief Revision: Foundations and Applications , 2000 .

[12]  Wlodzimierz Rabinowicz,et al.  Epistemic entrenchment with incomparabilities and relational belief revision , 1989, The Logic of Theory Change.

[13]  C. E. Alchourrón,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985 .

[14]  Krister Segerberg,et al.  Proposal for a Theory of Belief Revision Along the Lines of Lindström and Rabinowicz , 1997, Fundam. Informaticae.

[15]  Krister Segerberg,et al.  Belief Revision From the Point of View of Doxastic Logic , 1995, Log. J. IGPL.

[16]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[17]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[18]  John P. Burgess,et al.  Quick completeness proofs for some logics of conditionals , 1981, Notre Dame J. Formal Log..

[19]  Peter Gärdenfors,et al.  Knowledge in Flux: Modeling the Dynamics of Epistemic States , 2008 .