Wavefront error based tilt-to-length noise analysis for the LISA transmitted beam

The laser interferometer space antenna (LISA) will open the signal-rich 100 μHz to 1 Hz gravitational wave window. LISA is expected to be limited by acceleration noise in the low frequency range and noise associated with the optical measurement system above a few mHz. Of the latter, apparent length changes due to spacecraft (SC) angular jitter are among the most critical contributors. One of the coupling mechanisms is via wavefront error in the transmitted beam. Utilizing a Zernike polynomial decomposition of such wavefront error, we introduce and explore the validity of extremely fast best fit polynomial expansion based noise recreation tools that provide a clear picture for which transmit beam perturbations couple most strongly with SC jitter into LISA noise.

[1]  Ulrich Johann,et al.  LISA optical metrology: tilt-to-pathlength coupling effects on the picometer scale , 2021, International Conference on Space Optics.

[2]  N. Devaney,et al.  Beam propagation simulations for LISA in the presence of telescope aberrations , 2020, Classical and Quantum Gravity.

[3]  G. Mueller,et al.  Analytic HG-mode propagation through circular apertures with Zernike phase offset , 2020 .

[4]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[5]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[6]  S. Mottini,et al.  Coupling of wavefront errors and jitter in the LISA interferometer: far-field propagation , 2018, Classical and Quantum Gravity.

[7]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[8]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[9]  N. Mavalvala,et al.  Gravitational wave detector with cosmological reach , 2014, 1410.0612.

[10]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[11]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[12]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[13]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[14]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[15]  R. Adhikari Second Generation Gravitational Wave Detectors , 2007 .

[16]  Bernard F. Schutz,et al.  LISA: Probing the Universe with Gravitational Waves , 2006 .

[17]  G. Mueller Beam jitter coupling in advanced LIGO. , 2005, Optics express.

[18]  M. Caldwell,et al.  Optical engineering requirements for the LISA wavefront error budget , 1998 .

[19]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .