Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.

We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

[1]  S. John,et al.  Light-trapping in dye-sensitized solar cells , 2013 .

[2]  Christophe Ballif,et al.  High‐efficiency microcrystalline silicon single‐junction solar cells , 2013 .

[3]  W. Shen,et al.  Realization of high performance silicon nanowire based solar cells with large size , 2013, Nanotechnology.

[4]  Sergey Eyderman,et al.  Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals , 2013 .

[5]  Sergey Eyderman,et al.  Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping , 2013 .

[6]  Jan Benick,et al.  Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation. , 2013, Optics express.

[7]  S. John,et al.  Why trap light? , 2012, Nature materials.

[8]  Rihong Zhu,et al.  Design of a plasmonic back reflector for silicon nanowire decorated solar cells. , 2012, Optics letters.

[9]  Guillaume Demésy,et al.  Solar energy trapping with modulated silicon nanowire photonic crystals , 2012 .

[10]  S. John,et al.  Solar power conversion efficiency in modulated silicon nanowire photonic crystals , 2012 .

[11]  Han-Don Um,et al.  The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector. , 2012, Optics express.

[12]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[13]  Emmanuel Drouard,et al.  Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells. , 2012, Optics express.

[14]  Andrea Alù,et al.  Dual-interface gratings for broadband absorption enhancement in thin-film solar cells , 2012 .

[15]  S. Fischer,et al.  Increasing Upconversion by Plasmon Resonance in Metal Nanoparticles—A Combined Simulation Analysis , 2012, IEEE Journal of Photovoltaics.

[16]  Ashwin C. Atre,et al.  Toward high-efficiency solar upconversion with plasmonic nanostructures , 2012 .

[17]  Harry A. Atwater,et al.  Plasmonic light trapping in thin-film Si solar cells , 2012 .

[18]  Andrea Alù,et al.  Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells. , 2012, Optics express.

[19]  Florian Hallermann,et al.  Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions. , 2012, Optics express.

[20]  J. C. Goldschmidt,et al.  Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients , 2011, 1110.2309.

[21]  M. Meier,et al.  Plasmonic reflection grating back contacts for microcrystalline silicon solar cells , 2011 .

[22]  M. Povinelli,et al.  Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. , 2011, Optics express.

[23]  Teng‐Ming Chen,et al.  Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors , 2011 .

[24]  Xiang Zhang,et al.  Solar energy enhancement using down-converting particles: A rigorous approach , 2011 .

[25]  Peter Bienstman,et al.  Angle insensitive enhancement of organic solar cells using metallic gratings , 2011 .

[26]  陈彦吉,et al.  Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La_2Mo_2O_9:Yb,R (R=Er, Ho) phosphors , 2011 .

[27]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[28]  G. H. Bauer,et al.  Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization , 2010 .

[29]  John-Christopher Boyer,et al.  Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[30]  T. Saga Advances in crystalline silicon solar cell technology for industrial mass production , 2010 .

[31]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[32]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[33]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[34]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[35]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[36]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[37]  A. Chutinan,et al.  Light trapping and absorption optimization in certain thin-film photonic crystal architectures , 2008 .

[38]  V. K. Rai,et al.  Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles , 2008 .

[39]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[40]  Kyung-Young Jung,et al.  $\hbox{Au/SiO}_{2}$ Nanoring Plasmon Waveguides at Optical Communication Band , 2007, Journal of Lightwave Technology.

[41]  M. Green,et al.  Efficiency enhancement of solar cells by luminescent up-conversion of sunlight , 2006 .

[42]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[43]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[44]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[45]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[46]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[47]  F. A. Rubinelli,et al.  Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells , 2001 .

[48]  D. Gamelin,et al.  Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. , 2000, Accounts of chemical research.

[49]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[50]  Martin A. Green,et al.  Efficiency improvements of silicon solar cells by the impurity photovoltaic effect , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[51]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[52]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[53]  S. John Electromagnetic absorption in a disordered medium near a photon mobility edge , 1984 .

[54]  John C. C. Fan,et al.  The future of high efficiency solar cells , 1984 .

[55]  R. L. Chapman,et al.  Efficient AlGaAs shallow-homojunction solar cells , 1984 .

[56]  E. Yablonovitch Statistical ray optics , 1982 .

[57]  M. Lamorte,et al.  Analysis of AlGaAs-GaInAs cascade solar cell under AM 0-AM 5 spectra , 1979 .

[58]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[59]  G Güttler,et al.  Impurity photovoltaic effect in silicon , 1970 .

[60]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .