Electron and Hole Injection via Charge Transfer at the Topological Insulator Bi2–xSbxTe3–ySey–Organic Molecule Interface

As a methodology for controlling the carrier transport of topological insulators (TIs), a flexible tuning in carrier number on the surface states (SSs) of three-dimensional TIs by surface modifications using organic molecules is described. The principle of the carrier tuning and its type conversion of TIs presented in this research are based on the charge transfer of holes or electrons at the TI–organic molecule interface. When 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as an electron acceptor or tetracyanoquinodimethane (TCNQ) as a donor is employed for n- and p-Bi2–xSbxTe3–ySey (BSTS) single crystals, successful carrier conversion from n- to p-type and its reverse mode is demonstrated depending on the electron affinities of the molecules. The present method provides a nondestructive and efficient method for local tuning in carrier density of TIs and is useful for future applications.

[1]  Z. Ren,et al.  Fermi level tuning and a large activation gap achieved in the topological insulator Bi_{2}Te_{2}Se by Sn doping , 2012, 1203.6411.

[2]  M. Fuhrer,et al.  Towards spin injection from silicon into topological insulators: Schottky barrier between Si and Bi2Se3 , 2012, 1205.4488.

[3]  Xi Chen,et al.  Topological p-n Junction , 2012, 1202.1579.

[4]  Yoichi Ando,et al.  Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey , 2012, Nature Communications.

[5]  Zahid Hussain,et al.  Ambipolar field effect in the ternary topological insulator (Bi(x)Sb(1-x))2Te3 by composition tuning. , 2011, Nature nanotechnology.

[6]  Z. Ren,et al.  Optimizing Bi 2-x Sb x Te 3-y Se y solid solutions to approach the intrinsic topological insulator regime , 2011, 1110.1788.

[7]  Guang Wang,et al.  Topological Insulator Thin Films of Bi2Te3 with Controlled Electronic Structure , 2011, Advanced materials.

[8]  Hongtao Yuan,et al.  Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. , 2011, Nano letters.

[9]  Q. Xue,et al.  Band structure engineering in (Bi(1-x)Sb(x))(2)Te(3) ternary topological insulators. , 2011, Nature communications.

[10]  Z. Ren,et al.  Observation of dirac holes and electrons in a topological insulator. , 2011, Physical review letters.

[11]  S. Adam,et al.  Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3 , 2011, Nature Physics.

[12]  Zhi-Xun Shen,et al.  Rapid surface oxidation as a source of surface degradation factor for Bi₂Se₃. , 2011, ACS nano.

[13]  A. Morpurgo,et al.  Gate-tuned normal and superconducting transport at the surface of a topological insulator , 2011, Nature communications.

[14]  Q. Xue,et al.  GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR Bi2Se3 ON INSULATING SUBSTRATE , 2010, 1012.5716.

[15]  Kentaro Nomura,et al.  Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. , 2010, Physical review letters.

[16]  P. Jarillo-Herrero,et al.  Surface state transport and ambipolar electric field effect in Bi₂Se₃ nanodevices. , 2010, Nano letters.

[17]  B. Iversen,et al.  Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi(2)Se(3). , 2010, Nature communications.

[18]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[19]  Z. K. Liu,et al.  Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator , 2010, Science.

[20]  R J Cava,et al.  Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. , 2010, Physical review letters.

[21]  J Chen,et al.  Gate-voltage control of chemical potential and weak antilocalization in Bi₂Se₃. , 2010, Physical review letters.

[22]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[23]  Xiangshan Chen,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2009, 0911.3706.

[24]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[25]  P. Roushan,et al.  p -type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications , 2009, 0903.4406.

[26]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[27]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[28]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[29]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[30]  K. Novoselov,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006, cond-mat/0604323.

[31]  E. Ortí,et al.  On the electron affinity of TCNQ , 2004 .

[32]  A. Kahn,et al.  Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane , 2003 .

[33]  K. Mukasa,et al.  Evaluation of metal-Bi2Te3 contacts by electron tunneling spectroscopy , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[34]  T. Kistenmacher,et al.  Solution and Solid State Studies of Tetrafluoro-7,7,8,8-Tetracyano-p-Quinodimethane, TCNQF4. Evidence for Long-Range Amphoteric Intermolecular Interactions and Low-Dimensionality in the Solid State Structure , 1981 .

[35]  K. Trueblood,et al.  The crystal and molecular structure of 7,7,8,8‐tetracyanoquinodimethane , 1965 .

[36]  Xi Dai,et al.  Topological insulators in Bi 2 Se 3 , Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface , 2009 .