CONSTRAINING THE EXOZODIACAL LUMINOSITY FUNCTION OF MAIN-SEQUENCE STARS: COMPLETE RESULTS FROM THE KECK NULLER MID-INFRARED SURVEYS

Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near-and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 µm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 µm instrumental bandwidth. Based on the 8-9 µm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (> 3σ) excess: β Leo, β UMa, ζ Lep, and y Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. Astatistical analysis of the measurements further indicates that stars with known far-infrared (y ≥ 70 µm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-ilinfrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid-infrared counterpart points to populations of very hot and small (submicron) grains piling up very close to the sublimation radius. For solar-type stars with no known infrared excess, likely to be the most relevant targets for a future exo-Earth direct imaging mission, we find that their median zodi level is 12±24 zodis and lower than 60 (90) zodis with 95% (99%) confidence, if a lognormal zodi luminosity distribution is assumed.

[1]  Debra A. Fischer,et al.  THE TWENTY-FIVE YEAR LICK PLANET SEARCH , 2013, 1310.7315.

[2]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[3]  M. Wyatt The Insignificance of P-R drag in detectable extrasolar planetesimal belts , 2005, astro-ph/0501038.

[4]  H. Kataza,et al.  THE ABSENCE OF COLD DUST AROUND WARM DEBRIS DISK STAR HD 15407A , 2012, 1210.0587.

[5]  Brian D. Mason,et al.  The 2001 US Naval Observatory Double Star CD-ROM. I. The Washington Double Star Catalog , 2001 .

[6]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[7]  Brian D. Mason,et al.  The 2001 US Naval Observatory Double Star CD-ROM. II. The Fifth Catalog of Orbits of Visual Binary Stars , 2001 .

[8]  J. Crepp,et al.  Spatially resolved images of dust belt(s) around the planet-hosting subgiant κ CrB , 2013, 1302.7000.

[9]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[10]  L. Roberts,et al.  KNOW THE STAR, KNOW THE PLANET. I. ADAPTIVE OPTICS OF EXOPLANET HOST STARS , 2011, 1109.4320.

[11]  S. Ridgway,et al.  Erratum: ``First Results from the CHARA Array. VII. Long-Baseline Interferometric Measurements of Vega Consistent with a Pole-On, Rapidly Rotating Star'' (ApJ, 645, 664 [2006]) , 2006 .

[12]  K. Y. L. Su,et al.  EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2009, 0909.0058.

[13]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[14]  G. Rieke,et al.  The Exceptionally Large Debris Disk around γ Ophiuchi , 2008, 0804.2924.

[15]  Marc Ollivier,et al.  Direct detection and characterization of extrasolar planets: The Mariotti space interferometer , 2005 .

[16]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[17]  Laurent Jocou,et al.  Searching for faint companions with VLTI/PIONIER. I. Method and first results , 2011, 1110.1178.

[18]  M. Barlow,et al.  Herschel images of Fomalhaut: an extrasolar Kuiper belt at the height of its dynamical activity , 2012, 1204.5037.

[19]  H McAlister,et al.  Imaging the Surface of Altair , 2007, Science.

[20]  E. Serabyn,et al.  Exo--Zodiacal Dust Levels for Nearby Main Sequence Stars , 2011 .

[21]  et al.,et al.  The Visual Orbit of Pegasi , 1999 .

[22]  Gautam Vasisht,et al.  The Keck Interferometer , 2013 .

[23]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[24]  G. Benedetto,et al.  Predicting accurate stellar angular diameters by the near-infrared surface brightness technique , 2005 .

[25]  D. Ciardi,et al.  Altair’s Oblateness and Rotation Velocity from Long-Baseline Interferometry , 2001 .

[26]  G. Rieke,et al.  PROBING THE TERRESTRIAL REGIONS OF PLANETARY SYSTEMS: WARM DEBRIS DISKS WITH EMISSION FEATURES , 2014, 1407.7547.

[27]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[28]  G. Zins,et al.  SearchCal: a Virtual Observatory tool for searching calibrators in optical long-baseline interferometry II. The faint-object case , 2006, astro-ph/0607026.

[29]  IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs , 2006, astro-ph/0601468.

[30]  J. Augereau,et al.  Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust , 2014, 1404.2606.

[31]  Pierre Valiron,et al.  High latitude gas in the Beta Pictoris system. A possible origin related to Falling Evaporating Bodies. , 2007 .

[32]  Z. Balog,et al.  THE COLLISIONAL EVOLUTION OF DEBRIS DISKS , 2012, 1211.1415.

[33]  O. Absil,et al.  Hot exozodiacal dust resolved around Vega with IOTA/IONIC , 2011, 1108.3698.

[34]  E. Serabyn,et al.  AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. II. KECK NULLER MID-INFRARED OBSERVATIONS , 2013 .

[35]  NOAO,et al.  RESOLVING VEGA AND THE INCLINATION CONTROVERSY WITH CHARA/MIRC , 2012, 1211.6055.

[36]  M. McElwain,et al.  Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.

[37]  C. Hanot,et al.  A near-infrared interferometric survey of debris-disc stars - III. First statistics based on 42 stars observed with CHARA/FLUOR , 2013, 1307.2488.

[38]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[39]  G. Rieke,et al.  Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems , 2012, 1206.2370.

[40]  J. Augereau,et al.  Scattering of small bodies by planets: a potential origin for exozodiacal dust? , 2012, 1209.6033.

[41]  B. Zuckerman,et al.  THE ABSENCE OF COLD DUST AND THE MINERALOGY AND ORIGIN OF THE WARM DUST ENCIRCLING BD +20 307 , 2010, 1010.6218.

[42]  Bertrand Mennesson,et al.  AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. I. NEAR-INFRARED DETECTION OF HOT DUST WITH VLTI/VINCI , 2009, 0908.3133.

[43]  S. Wolf,et al.  Signatures of Planets in Spatially Unresolved Debris Disks , 2005, astro-ph/0506669.

[44]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[45]  G. Perrin,et al.  A catalogue of calibrator stars for long baseline stellar interferometry , 2002 .

[46]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[47]  C. Packham,et al.  HIGH SPATIAL RESOLUTION IMAGING OF THERMAL EMISSION FROM DEBRIS DISKS , 2010, 1011.1410.

[48]  D. Mawet,et al.  NEW CONSTRAINTS ON COMPANIONS AND DUST WITHIN A FEW AU OF VEGA , 2011 .

[49]  Bertrand Mennesson,et al.  THE KECK INTERFEROMETER NULLER , 2012 .

[50]  G. Rieke,et al.  Resolved debris discs around A stars in the Herschel DEBRIS survey , 2012, 1210.0547.

[51]  S. T. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006 .

[52]  H. McAlister,et al.  DUST IN THE INNER REGIONS OF DEBRIS DISKS AROUND A STARS , 2008, 0810.3701.

[53]  G. Rieke,et al.  THE STRUCTURE OF THE β LEONIS DEBRIS DISK , 2010, 1010.0003.

[54]  R. Smith,et al.  Resolving the hot dust around HD69830 and η Corvi with MIDI and VISIR , 2009, 0906.3704.

[55]  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field P , 2002, astro-ph/0211470.

[56]  R. Laureijs,et al.  Incidence and survival of remnant disks around main-sequence stars , 2000, astro-ph/0011137.

[57]  To appear in The Astrophysical Journal An Excess Due to Small Grains Around The Nearby K0V Star HD69830: Asteroid or Cometary Debris? , 2005 .

[58]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[59]  M. Jura,et al.  A Possible Massive Asteroid Belt around ζ Leporis , 2001 .

[60]  M. Wyatt,et al.  The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material , 2011, 1111.1858.

[61]  B. Mennesson,et al.  An interferometric study of the Fomalhaut inner debris disk: III. Detailed models of the exozodiacal disk and its origin , 2013, 1306.0956.

[62]  M. Wyatt,et al.  The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability , 2013, 1305.6607.

[63]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[64]  I. Ribas,et al.  DUst around NEarby Stars. The survey observational results , 2013, 1305.0155.

[65]  Submillimeter Images of a Dusty Kuiper Belt around η Corvi , 2004, astro-ph/0411061.

[66]  Gautam Vasisht,et al.  Keck Interferometer Nuller Data Reduction and On-Sky Performance , 2009 .

[67]  K. Y. L. Su,et al.  accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/19/04 DEBRIS DISK EVOLUTION AROUND A STARS , 2006 .

[68]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[69]  David E. Trilling,et al.  PLANETS AND DEBRIS DISKS: RESULTS FROM A SPITZER/MIPS SEARCH FOR INFRARED EXCESS , 2009 .

[70]  Massimo Marengo,et al.  First Look at the Fomalhaut Debris Disk with the Spitzer Space Telescope , 2004 .

[71]  Bertrand Mennesson,et al.  EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER , 2011 .

[72]  A. Hale Orbital coplanarity in solar-type binary systems: Implications for planetary system formation and detection , 1994 .

[73]  J. R. Martínez-Galarza,et al.  ONGOING MASSIVE STAR FORMATION IN NGC 604 , 2012, 1210.5537.

[74]  C. Packham,et al.  Mid-Infrared Resolution of a 3 AU Radius Debris Disk around ζ Leporis* , 2006 .

[75]  R. Jayawardhana,et al.  Direct detection of the companion of χ1 Orionis , 2002, astro-ph/0209404.

[76]  Submillimetre observations and modelling of Vega-type stars , 2003, astro-ph/0311593.

[77]  C. Dominik,et al.  Near-infrared emission from sublimating dust in collisionally active debris disks , 2014, 1404.3271.

[78]  M. C. Wyatt,et al.  SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At ∼1 Gyr , 2011, 1110.4172.

[79]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[80]  Robert B. Leighton,et al.  Two-micron sky survey : a preliminary catalog , 1969 .

[81]  J. Wisniewski,et al.  SPATIALLY RESOLVED IMAGING OF THE TWO-COMPONENT η Crv DEBRIS DISK WITH HERSCHEL , 2014, 1402.1184.

[82]  Caltech,et al.  A SPITZER INFRARED SPECTROGRAPH STUDY OF DEBRIS DISKS AROUND PLANET-HOST STARS , 2010, 1010.3292.

[83]  K. Stapelfeldt,et al.  ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT , 2013, 1301.1331.

[84]  H. Aumann,et al.  Search for Vega-like nearby stars with 12 micron excess , 1991 .