Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism.

Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.

[1]  J. Brotchie,et al.  Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV α-Synuclein Rat Model of Parkinson’s Disease , 2016, Molecular Neurobiology.

[2]  N. Brown,et al.  EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy , 2016, Brain : a journal of neurology.

[3]  A. Çayır,et al.  Vici syndrome in siblings born to consanguineous parents , 2016, American journal of medical genetics. Part A.

[4]  V. Dötsch,et al.  TECPR2 Cooperates with LC3C to Regulate COPII-Dependent ER Export. , 2015, Molecular cell.

[5]  S. Martens,et al.  Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy , 2015, eLife.

[6]  M. Kurian,et al.  Neurodegeneration with Brain Iron Accumulation: Genetic Diversity and Pathophysiological Mechanisms. , 2015, Annual review of genomics and human genetics.

[7]  M. Damme,et al.  In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11 , 2015, PLoS genetics.

[8]  Y. Li,et al.  Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model , 2015, Neuroscience.

[9]  K. Bhatia,et al.  Neuropathology of Beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy , 2015, Acta neuropathologica communications.

[10]  Xiaoqun Wang,et al.  The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis , 2015, Autophagy.

[11]  Qian Cai,et al.  Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes , 2015, The Journal of cell biology.

[12]  G. Oyama,et al.  High frequency of beta-propeller protein-associated neurodegeneration (BPAN) among patients with intellectual disability and young-onset parkinsonism , 2015, Neurobiology of Aging.

[13]  Seamus J. Martin,et al.  Autophagy in malignant transformation and cancer progression , 2015, The EMBO journal.

[14]  M. Sahin,et al.  Autism and the synapse: emerging mechanisms and mechanism-based therapies. , 2015, Current opinion in neurology.

[15]  S. Gabriel,et al.  Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction , 2015, Nature Genetics.

[16]  C. Vite,et al.  Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease , 2015, Science Translational Medicine.

[17]  G. Ravenscroft,et al.  Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. , 2015, Brain : a journal of neurology.

[18]  D. Rubinsztein,et al.  PI(5)P Regulates Autophagosome Biogenesis , 2015, Molecular cell.

[19]  Xiao-yan Chen,et al.  Diffusion Efficiency and Bioavailability of Resveratrol Administered to Rat Brain by Different Routes: Therapeutic Implications , 2015, Neurotherapeutics.

[20]  D. Sabatini,et al.  Nutrient-sensing mechanisms and pathways , 2015, Nature.

[21]  V. Ramesh,et al.  Exome sequencing in undiagnosed inherited and sporadic ataxias , 2014, Brain : a journal of neurology.

[22]  Y. Crow,et al.  Basal ganglia calcification in a patient with beta-propeller protein-associated neurodegeneration. , 2014, Pediatric neurology.

[23]  C. Blackstone,et al.  Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. , 2014, The Journal of clinical investigation.

[24]  P. Robinson,et al.  First description of a patient with Vici syndrome due to a mutation affecting the penultimate exon of EPG5 and review of the literature , 2014, American journal of medical genetics. Part A.

[25]  M. Bitner-Glindzicz,et al.  Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. , 2014, American journal of human genetics.

[26]  F. Santorelli,et al.  Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms , 2014, Experimental Neurology.

[27]  J. Lipton,et al.  The Neurology of mTOR , 2014, Neuron.

[28]  E. Olson,et al.  Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex , 2014, The Journal of experimental medicine.

[29]  L. Tan,et al.  Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance , 2014, Neuropharmacology.

[30]  Bradley S. Peterson,et al.  Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits , 2014, Neuron.

[31]  T. Schwarz,et al.  Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin , 2014, The Journal of cell biology.

[32]  R. Teasdale,et al.  Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling* , 2014, The Journal of Biological Chemistry.

[33]  C. Soares-Cunha,et al.  Lithium Chloride Therapy Fails to Improve Motor Function in a Transgenic Mouse Model of Machado-Joseph Disease , 2014, The Cerebellum.

[34]  D. Kwiatkowski,et al.  Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. , 2014, Human molecular genetics.

[35]  E. Holzbaur,et al.  Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. , 2014, Developmental cell.

[36]  N. Matsumoto,et al.  A novel WDR45 mutation in a patient with static encephalopathy of childhood with neurodegeneration in adulthood (SENDA) , 2014, American journal of medical genetics. Part A.

[37]  G. Rouleau,et al.  Molecular aspects of hereditary spastic paraplegia. , 2014, Experimental cell research.

[38]  B. Castellotti,et al.  Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. , 2014, Brain : a journal of neurology.

[39]  R. Hoffman,et al.  Ophthalmologic features of Vici syndrome. , 2014, Journal of pediatric ophthalmology and strabismus.

[40]  Frances M. Platt,et al.  Sphingolipid lysosomal storage disorders , 2014, Nature.

[41]  A. Ernst,et al.  Cargo recognition and trafficking in selective autophagy , 2014, Nature Cell Biology.

[42]  K. Okamoto Organellophagy: Eliminating cellular building blocks via selective autophagy , 2014, The Journal of cell biology.

[43]  A. Vanderver,et al.  Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11 , 2014, Annals of clinical and translational neurology.

[44]  R. Jaenisch,et al.  Genetic and Chemical Correction of Cholesterol Accumulation and Impaired Autophagy in Hepatic and Neural Cells Derived from Niemann-Pick Type C Patient-Specific iPS Cells , 2014, Stem cell reports.

[45]  Lígia C. Gomes,et al.  Autophagy in antimicrobial immunity. , 2014, Molecular cell.

[46]  R. Jaenisch,et al.  Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann-Pick type C1 disease , 2014, Autophagy.

[47]  M. Sahin,et al.  Mechanism-based treatment in tuberous sclerosis complex. , 2014, Pediatric neurology.

[48]  C. Schaaf,et al.  Novel mutation of the WDR45 gene causing beta‐propeller protein‐associated neurodegeneration , 2014, Movement disorders : official journal of the Movement Disorder Society.

[49]  N. Matsumoto,et al.  Characteristic MRI findings in beta-propeller protein-associated neurodegeneration (BPAN). , 2014, Neurology. Clinical practice.

[50]  C. Moussa,et al.  Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance , 2014, Journal of Molecular Medicine.

[51]  S. Gygi,et al.  Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy , 2014, Nature.

[52]  D. Green,et al.  To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate , 2014, Cell.

[53]  N. Matsumoto,et al.  De novo WDR45 mutation in a patient showing clinically Rett syndrome with childhood iron deposition in brain , 2014, Journal of Human Genetics.

[54]  W. Verhoeven,et al.  Beta-propeller protein-associated neurodegeneration (BPAN), a rare form of NBIA: novel mutations and neuropsychiatric phenotype in three adult patients. , 2014, Parkinsonism & related disorders.

[55]  Ruedi Aebersold,et al.  Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase , 2014, Molecular cell.

[56]  E. Clementi,et al.  ZFYVE26/SPASTIZIN , 2014, Autophagy.

[57]  W. Le,et al.  MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis , 2014, Autophagy.

[58]  J. Brumell,et al.  Bacteria–autophagy interplay: a battle for survival , 2014, Nature Reviews Microbiology.

[59]  R. Hennekam,et al.  Intellectual disability, coarse face, relative macrocephaly, and cerebellar hypotrophy in two sisters , 2014, American journal of medical genetics. Part A.

[60]  D. Klionsky,et al.  The machinery of macroautophagy , 2013, Cell Research.

[61]  L. Schöls,et al.  A Hereditary Spastic Paraplegia Mouse Model Supports a Role of ZFYVE26/SPASTIZIN for the Endolysosomal System , 2013, PLoS genetics.

[62]  T. Yoshimori,et al.  The autophagosome: origins unknown, biogenesis complex , 2013, Nature Reviews Molecular Cell Biology.

[63]  R. Boustany,et al.  Lysosomal storage diseases—the horizon expands , 2013, Nature Reviews Neurology.

[64]  A. Ballabio,et al.  Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. , 2013, Brain : a journal of neurology.

[65]  Simon C Watkins,et al.  Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells , 2013, Nature Cell Biology.

[66]  Jiannis Ragoussis,et al.  Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model , 2013, Brain : a journal of neurology.

[67]  C. Moussa,et al.  Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models. , 2013, Human molecular genetics.

[68]  G. Petsko,et al.  Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse model , 2013, Molecular Psychiatry.

[69]  R. Nixon,et al.  The role of autophagy in neurodegenerative disease , 2013, Nature Medicine.

[70]  M. Gautel,et al.  Clinical utility gene card for: Vici Syndrome , 2013, European Journal of Human Genetics.

[71]  C. Hetz,et al.  Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons , 2013, Autophagy.

[72]  W. Harkness,et al.  mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis , 2013, Acta Neuropathologica.

[73]  J. Hardy,et al.  β-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. , 2013, Brain : a journal of neurology.

[74]  R. Horvath Brain iron takes off: a new propeller protein links neurodegeneration with autophagy. , 2013, Brain : a journal of neurology.

[75]  T. P. Neufeld,et al.  ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase , 2013, Nature Cell Biology.

[76]  Yan G Zhao,et al.  Role of Epg5 in selective neurodegeneration and Vici syndrome , 2013, Autophagy.

[77]  C. Sasakawa,et al.  Roles of Autophagy in Elimination of Intracellular Bacterial Pathogens , 2013, Front. Immunol..

[78]  W. Le,et al.  Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer's disease. , 2013, Current Alzheimer research.

[79]  Anders Björklund,et al.  TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity , 2013, Proceedings of the National Academy of Sciences.

[80]  Nina Raben,et al.  Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease , 2013, EMBO molecular medicine.

[81]  K. Adeli,et al.  Autophagy: Emerging roles in lipid homeostasis and metabolic control. , 2013, Biochimica et biophysica acta.

[82]  Yan G Zhao,et al.  Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration , 2013, The Journal of cell biology.

[83]  N. Matsumoto,et al.  De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood , 2013, Nature Genetics.

[84]  A. Ballabio,et al.  Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency , 2013, EMBO molecular medicine.

[85]  K. Guan,et al.  Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy , 2013, Cell.

[86]  G. D. Paolo,et al.  The Role of Lipids in the Control of Autophagy , 2013, Current Biology.

[87]  K. Shianna,et al.  Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. , 2012, American journal of human genetics.

[88]  T. Wieland,et al.  Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. , 2012, American journal of human genetics.

[89]  E. Bertini,et al.  Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy , 2012, Nature Genetics.

[90]  S. Rivaud-Pechoux,et al.  Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish , 2012, Neurobiology of Disease.

[91]  G. Bhagat,et al.  Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation , 2012, Science.

[92]  A. Lieberman,et al.  Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. , 2012, Human molecular genetics.

[93]  M. Komatsu,et al.  Impaired Autophagy in Neurons after Disinhibition of Mammalian Target of Rapamycin and Its Contribution to Epileptogenesis , 2012, The Journal of Neuroscience.

[94]  İ. Erol,et al.  Vici syndrome associated with sensorineural hearing loss and laryngomalacia. , 2012, Pediatric neurology.

[95]  K. Qin,et al.  Rapamycin Delays Disease Onset and Prevents PrP Plaque Deposition in a Mouse Model of Gerstmann–Sträussler–Scheinker Disease , 2012, The Journal of Neuroscience.

[96]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[97]  K. Tsai,et al.  Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43 , 2012, Proceedings of the National Academy of Sciences.

[98]  G. Petsko,et al.  Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain , 2012, Molecular Psychiatry.

[99]  A. Cuervo,et al.  Chaperone-mediated autophagy: a unique way to enter the lysosome world. , 2012, Trends in cell biology.

[100]  Rie Ichikawa,et al.  Atg9 vesicles are an important membrane source during early steps of autophagosome formation , 2012, The Journal of cell biology.

[101]  E. Masliah,et al.  PGC-1α Rescues Huntington’s Disease Proteotoxicity by Preventing Oxidative Stress and Promoting TFEB Function , 2012, Science Translational Medicine.

[102]  Jacqueline N. Crawley,et al.  Autistic-like behavior and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice , 2012, Nature.

[103]  T. Schwarz,et al.  The pathways of mitophagy for quality control and clearance of mitochondria , 2012, Cell Death and Differentiation.

[104]  P. McLean,et al.  Protein degradation pathways in Parkinson’s disease: curse or blessing , 2012, Acta Neuropathologica.

[105]  C. Blackstone,et al.  Cellular pathways of hereditary spastic paraplegia. , 2012, Annual review of neuroscience.

[106]  Kuninori Suzuki Selective autophagy in budding yeast , 2012, Cell Death and Differentiation.

[107]  T. Walther,et al.  The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis , 2012, Science Signaling.

[108]  M. Goedert,et al.  Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy , 2012, Brain : a journal of neurology.

[109]  M. Czaja,et al.  Regulation of lipid stores and metabolism by lipophagy , 2012, Cell Death and Differentiation.

[110]  L. Collinson,et al.  Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy , 2012, Molecular biology of the cell.

[111]  Yong Chen,et al.  MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB , 2012, Autophagy.

[112]  B. Hyman,et al.  Alpha-synuclein aggregation involves a bafilomycin A1-sensitive autophagy pathway , 2012, Autophagy.

[113]  A. Ballabio,et al.  Autophagy in lysosomal storage disorders , 2012, Autophagy.

[114]  N. Hattori,et al.  Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: Implications of autophagy promotion , 2012, Neurobiology of Disease.

[115]  S. Schneider,et al.  Neuroimaging Features of Neurodegeneration with Brain Iron Accumulation , 2012, American Journal of Neuroradiology.

[116]  E. Holzbaur,et al.  Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons , 2012, The Journal of cell biology.

[117]  M. Molinari,et al.  Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage , 2012, Autophagy.

[118]  C. Sewry,et al.  Vici syndrome—A rapidly progressive neurodegenerative disorder with hypopigmentation, immunodeficiency and myopathic changes on muscle biopsy , 2012, American journal of medical genetics. Part A.

[119]  E. Bertini,et al.  Immunodeficiency in Vici syndrome: A heterogeneous phenotype , 2012, American journal of medical genetics. Part A.

[120]  H. Yang,et al.  Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y , 2011, Neuroscience.

[121]  S. Finkbeiner,et al.  A comprehensive glossary of autophagy-related molecules and processes (2nd edition) , 2011, Autophagy.

[122]  S. Wesselborg,et al.  Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks , 2011, Molecular and Cellular Biology.

[123]  B. Hyman,et al.  Distinct Roles In Vivo for the Ubiquitin–Proteasome System and the Autophagy–Lysosomal Pathway in the Degradation of α-Synuclein , 2011, The Journal of Neuroscience.

[124]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[125]  A. Ballabio,et al.  Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. , 2011, Human molecular genetics.

[126]  Smita Majumder,et al.  Inducing Autophagy by Rapamycin Before, but Not After, the Formation of Plaques and Tangles Ameliorates Cognitive Deficits , 2011, Alzheimer's & Dementia.

[127]  Li Yu,et al.  The Wd40 Repeat Ptdins(3)p-binding Protein Epg-6 Regulates Progression of Omegasomes to Autophagosomes , 2022 .

[128]  C. Duyckaerts,et al.  Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia , 2011, Molecular and Cellular Neuroscience.

[129]  Ai Yamamoto,et al.  The elimination of accumulated and aggregated proteins: A role for aggrephagy in neurodegeneration , 2011, Neurobiology of Disease.

[130]  R. Rogers,et al.  Vici Syndrome: A Rare Autosomal Recessive Syndrome with Brain Anomalies, Cardiomyopathy, and Severe Intellectual Disability , 2011, Case reports in genetics.

[131]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[132]  P. Greengard,et al.  A small‐molecule enhancer of autophagy decreases levels of Aβ and APP‐CTF via Atg5‐dependent autophagy pathway , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[133]  F. Ishikawa,et al.  Distinct Mechanisms of Ferritin Delivery to Lysosomes in Iron-Depleted and Iron-Replete Cells , 2011, Molecular and Cellular Biology.

[134]  William A Weiss,et al.  Principles and Current Strategies for Targeting Autophagy for Cancer Treatment , 2011, Clinical Cancer Research.

[135]  M. Lotze,et al.  The Beclin 1 network regulates autophagy and apoptosis , 2011, Cell Death and Differentiation.

[136]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[137]  Jae-Woong Chang,et al.  Lithium rescues the impaired autophagy process in CbCln3Δex7/8/Δex7/8 cerebellar cells and reduces neuronal vulnerability to cell death via IMPase inhibition , 2011, Journal of neurochemistry.

[138]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[139]  Fred H. Gage,et al.  A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells , 2010, Cell.

[140]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[141]  R. Russell,et al.  WD40 proteins propel cellular networks. , 2010, Trends in biochemical sciences.

[142]  D. Walsh,et al.  Macroautophagy Is Not Directly Involved in the Metabolism of Amyloid Precursor Protein* , 2010, The Journal of Biological Chemistry.

[143]  Daniel J. Klionsky,et al.  An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis , 2010, The Journal of cell biology.

[144]  A. Cuervo,et al.  Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation , 2010, Neurobiology of Disease.

[145]  Y. Sakai,et al.  Peroxisomes as dynamic organelles: autophagic degradation , 2010, The FEBS journal.

[146]  Simon Watkins,et al.  An Autophagy-Enhancing Drug Promotes Degradation of Mutant α1-Antitrypsin Z and Reduces Hepatic Fibrosis , 2010, Science.

[147]  M. Al-Owain,et al.  Vici syndrome associated with unilateral lung hypoplasia and myopathy , 2010, American journal of medical genetics. Part A.

[148]  D. Hailey,et al.  Autophagy termination and lysosome reformation regulated by mTOR , 2010, Nature.

[149]  Li Yu,et al.  C. elegans Screen Identifies Autophagy Genes Specific to Multicellular Organisms , 2010, Cell.

[150]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[151]  Qing Jun Wang,et al.  The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. , 2010, Trends in cell biology.

[152]  A. Shevchenko,et al.  A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia , 2010, PLoS biology.

[153]  D. Rubinsztein,et al.  A comprehensive glossary of autophagy-related molecules and processes , 2010, Autophagy.

[154]  N. Ktistakis,et al.  Regulation of autophagy by phosphatidylinositol 3‐phosphate , 2010, FEBS letters.

[155]  S. Mohammed,et al.  Vici syndrome associated with sensorineural hearing loss and evidence of neuromuscular involvement on muscle biopsy , 2010, American journal of medical genetics. Part A.

[156]  Steve D. M. Brown,et al.  Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease , 2010, Human molecular genetics.

[157]  J. Simon,et al.  AMP-activated Protein Kinase Signaling Activation by Resveratrol Modulates Amyloid-β Peptide Metabolism* , 2010, The Journal of Biological Chemistry.

[158]  J. Winkler,et al.  Frequency and phenotype of SPG11 and SPG15 in complicated hereditary spastic paraplegia , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[159]  A. Durr,et al.  SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum , 2009, Neurology.

[160]  A. Viale,et al.  Modeling Pathogenesis and Treatment of Familial Dysautonomia using Patient Specific iPSCs , 2009, Nature.

[161]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[162]  K. Heidenreich,et al.  Insulin-like Growth Factor-I Prevents the Accumulation of Autophagic Vesicles and Cell Death in Purkinje Neurons by Increasing the Rate of Autophagosome-to-lysosome Fusion and Degradation* , 2009, The Journal of Biological Chemistry.

[163]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[164]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[165]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[166]  S. Akira,et al.  Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages , 2009, Nature Cell Biology.

[167]  Qing Jun Wang,et al.  Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex , 2009, Nature Cell Biology.

[168]  James A. Thomson,et al.  Induced pluripotent stem cells from a spinal muscular atrophy patient , 2009, Nature.

[169]  N. Mizushima,et al.  Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. , 2008, Molecular biology of the cell.

[170]  Christos Proukakis,et al.  Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms , 2008, The Lancet Neurology.

[171]  Tianhong Pan,et al.  Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement , 2008, Neurobiology of Disease.

[172]  George Q. Daley,et al.  Disease-Specific Induced Pluripotent Stem Cells , 2008, Cell.

[173]  Tianhong Pan,et al.  The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. , 2008, Brain : a journal of neurology.

[174]  D. Rubinsztein,et al.  Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. , 2008, Nature chemical biology.

[175]  A. Durr,et al.  Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. , 2008, American journal of human genetics.

[176]  N. Elleuch,et al.  Hereditary spastic paraplegia with mental impairment and thin corpus callosum in Tunisia: SPG11, SPG15, and further genetic heterogeneity. , 2008, Archives of neurology.

[177]  F. Pasquier,et al.  Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. , 2008, Brain : a journal of neurology.

[178]  Gabriele Siciliano,et al.  Lithium delays progression of amyotrophic lateral sclerosis , 2008, Proceedings of the National Academy of Sciences.

[179]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[180]  Masahiko Watanabe,et al.  Aberrant Membranes and Double-Membrane Structures Accumulate in the Axons of Atg5-Null Purkinje Cells before Neuronal Death , 2007, Autophagy.

[181]  Masaaki Komatsu,et al.  Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration , 2007, Proceedings of the National Academy of Sciences.

[182]  S. Schreiber,et al.  Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. , 2007, Nature chemical biology.

[183]  M. Ruberg,et al.  Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum , 2007, Nature Genetics.

[184]  D. Rubinsztein,et al.  Trehalose, a Novel mTOR-independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein* , 2007, Journal of Biological Chemistry.

[185]  J. Kohyama,et al.  Sibling cases of Vici syndrome: Sleep abnormalities and complications of renal tubular acidosis , 2007, American journal of medical genetics. Part A.

[186]  M. Linder,et al.  Release of iron from ferritin requires lysosomal activity. , 2006, American journal of physiology. Cell physiology.

[187]  B. Oh,et al.  Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG , 2006, Nature Cell Biology.

[188]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[189]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[190]  R. Schmidt,et al.  Bafilomycin A1 Inhibits Chloroquine-Induced Death of Cerebellar Granule Neurons , 2006, Molecular Pharmacology.

[191]  Atul Mehta,et al.  Lysosomal Storage Disorders , 2005 .

[192]  G. Bjørkøy,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[193]  D. Rubinsztein,et al.  Lithium induces autophagy by inhibiting inositol monophosphatase , 2005, The Journal of cell biology.

[194]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[195]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[196]  Alfred Nordheim,et al.  WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy , 2004, Oncogene.

[197]  Francesco Scaravilli,et al.  Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease , 2004, Nature Genetics.

[198]  Jeremy N. Skepper,et al.  α-Synuclein Is Degraded by Both Autophagy and the Proteasome* , 2003, Journal of Biological Chemistry.

[199]  T. Toda,et al.  Sister and brother with Vici syndrome: agenesis of the corpus callosum, albinism, and recurrent infections. , 2002, American journal of medical genetics.

[200]  M. Hutchinson,et al.  SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q , 2001, Neurology.

[201]  M. Overduin,et al.  Structural mechanism of endosome docking by the FYVE domain. , 2001, Science.

[202]  H. Utsumi,et al.  Linkage of autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum to chromosome 15q13–15 , 2000, Annals of neurology.

[203]  A. Verloes,et al.  Albinism and agenesis of the corpus callosum with profound developmental delay: Vici syndrome, evidence for autosomal recessive inheritance. , 1999, American journal of medical genetics.

[204]  E. Hoffman,et al.  Genetic localization of a new locus for recessive familial spastic paraparesis to 15q13-15 , 1999, Neurology.

[205]  M. Reivich,et al.  ACTIVATION , 1980, The Social Value of Zoos.

[206]  K. Kjellin Familial spastic paraplegia with amyotrophy, oligophrenia, and central retinal degeneration. , 1959, Archives of neurology.

[207]  E. Roach,et al.  Tuberous sclerosis complex. , 2015, Handbook of clinical neurology.

[208]  S. Kölker,et al.  Emerging role of autophagy in pediatric neurodegenerative and neurometabolic diseases , 2014, Pediatric Research.

[209]  D. Marchionini,et al.  Assessment of chloroquine treatment for modulating autophagy flux in brain of WT and HD mice. , 2014, Journal of Huntington's disease.

[210]  D. Rubinsztein,et al.  Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3 , 2009, Brain : a journal of neurology.

[211]  PARKINSON ’ S DISEASE MODELS , 2009 .

[212]  R. Schmidt,et al.  Bafilomycin A 1 Inhibits Chloroquine-Induced Death of Cerebellar Granule Neurons , 2006 .

[213]  G. Bjørkøy,et al.  p 62 / SQSTM 1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005 .

[214]  R. Boldrini,et al.  Agenesis of the corpus callosum, combined immunodeficiency, bilateral cataract, and hypopigmentation in two brothers. , 1988, American journal of medical genetics.