Classification of ABO3 perovskite solids: a machine learning study.

We explored the use of machine learning methods for classifying whether a particular ABO3 chemistry forms a perovskite or non-perovskite structured solid. Starting with three sets of feature pairs (the tolerance and octahedral factors, the A and B ionic radii relative to the radius of O, and the bond valence distances between the A and B ions from the O atoms), we used machine learning to create a hyper-dimensional partial dependency structure plot using all three feature pairs or any two of them. Doing so increased the accuracy of our predictions by 2-3 percentage points over using any one pair. We also included the Mendeleev numbers of the A and B atoms to this set of feature pairs. Doing this and using the capabilities of our machine learning algorithm, the gradient tree boosting classifier, enabled us to generate a new type of structure plot that has the simplicity of one based on using just the Mendeleev numbers, but with the added advantages of having a higher accuracy and providing a measure of likelihood of the predicted structure.

[1]  Zhong Lin Wang Functional and Smart Materials , 2020 .

[2]  James R. Chelikowsky,et al.  Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds , 1978 .

[3]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[4]  P M Woodward,et al.  Prediction of the crystal structures of perovskites using the software program SPuDS. , 2001, Acta crystallographica. Section B, Structural science.

[5]  Peter A. Flach,et al.  Machine Learning - The Art and Science of Algorithms that Make Sense of Data , 2012 .

[6]  A. Bloch,et al.  Quantum-Defect Electronegativity Scale for Nontransition Elements , 1974 .

[7]  A. Verma,et al.  Lattice constant of cubic perovskites , 2009 .

[8]  I. Brown,et al.  Determination of the Bonding and Valence Distribution in Inorganic Solids by the Maximum Entropy Method , 1998 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[11]  James E. Gubernatis,et al.  Structure classification and melting temperature prediction in octet AB solids via machine learning , 2015 .

[12]  Na Li,et al.  Structural stability and formability of ABO3-type perovskite compounds. , 2007, Acta crystallographica. Section B, Structural science.

[13]  Lukas Furst,et al.  Bonding And Structure Of Molecules And Solids , 2016 .

[14]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[15]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[16]  W. Lo,et al.  Structure and Bonding , 2005 .

[17]  W. B. Pearson,et al.  On the crystal chemistry of normal valence compounds , 1959 .

[18]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[19]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  R. L. Moreira,et al.  Comment on “Prediction of lattice constant in cubic perovskites” , 2007, cond-mat/0703451.

[21]  M. Zhu,et al.  Prediction of lattice constant in cubic perovskites , 2006 .

[22]  Adrian P. Sutton,et al.  Electronic Structure of Materials , 1993 .

[23]  M. Zhu,et al.  Formability of ABO3 cubic perovskites , 2008 .

[24]  A. Kumar,et al.  Prediction of Formability in Perovskite-Type Oxides~!2008-08-05~!2008-10-08~!2008-12-05~! , 2008 .

[25]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[26]  Chonghe Li,et al.  Formability of ABO3 perovskites , 2004 .