Traitement des variabilités métier dans les Systèmes d'Information biologiques

Scientific information systems require consideration of two types of variability: variability between actors and variability between studies. We treated the variability between actors in a data import system that guarantees data quality and the variability between studies by the use of an annotation mechanism. To control high quality data when importing information from different actors, we propose an approach based on two levels of knowledge: 1) knowledge in the IS is represented by models and their implementation. They guarantee the completeness and consistency of data in the IS; 2) domain knowledge is represented by an application ontology. eClims system which implements these two mechanisms is described. MOTS-CLES : connaissance evolutive, importation de donnees, annotation, SI biologique

[1]  Walid G. Aref,et al.  Managing Biological Data using bdbms , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[2]  Ivan M. Milman,et al.  Enterprise Master Data Management: An SOA Approach to Managing Core Information , 2008 .

[3]  Lei Zhang,et al.  Using OCL in Executable UML , 2008, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[4]  Boris Motik,et al.  Reconciling description logics and rules , 2010, JACM.

[5]  Michael Y. Galperin,et al.  The 2012 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection , 2011, Nucleic Acids Res..

[6]  Michael Y. Galperin,et al.  The 2012 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection , 2011, Nucleic Acids Res..

[7]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[8]  Dan Suciu,et al.  Believe It or Not: Adding Belief Annotations to Databases , 2009, Proc. VLDB Endow..

[9]  John V. Carlis,et al.  Genomic data modeling , 2003, Inf. Syst..

[10]  Alvaro Cortés-Calabuig,et al.  Constraints in RDF , 2010, SDKB.

[11]  H. V. Jagadish,et al.  Database management for life sciences research , 2004, SGMD.

[12]  Nicole Bidoit,et al.  Types and Constraints: From Relational to XML Data , 2010, SDKB.

[13]  Shamkant B. Navathe,et al.  Genomic and Proteomic Databases: Foundations, Current Status and Future Applications , 2007, J. Comput. Sci. Eng..

[14]  Walid G. Aref,et al.  Supporting annotations on relations , 2009, EDBT '09.

[15]  Elizabeth Gross,et al.  Phylogenetic trees , 2016, Journal of Software for Algebra and Geometry.

[16]  Wang Chiew Tan,et al.  DBNotes: a post-it system for relational databases based on provenance , 2005, SIGMOD '05.

[17]  Slim Turki,et al.  Des hyperclasses aux composants pour l'ingénierie des systèmes d'information. (From hyperclasses to components for information systems engineering) , 2005 .

[18]  Cristina Gómez,et al.  Improving the definition of general constraints in UML , 2007, Software & Systems Modeling.

[19]  S J Willson Measuring inconsistency in phylogenetic trees. , 1998, Journal of theoretical biology.

[20]  Wang Chiew Tan,et al.  An annotation management system for relational databases , 2004, The VLDB Journal.

[21]  James Cheney,et al.  Curated databases , 2008, PODS.

[22]  Saul A. Kripke,et al.  Semantical Considerations on Modal Logic , 2012 .