Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation

Summary1.A theory is presented that utilizes the structure of natural images, and how they change in time, to produce spatiotemporal filters that maximize information flow through a noisy channel of limited dynamic range. For low signal-to-noise ratios (SNRs) the filter has low-pass, and for high SNRs band-pass characteristics, both in space and time.2.Theoretical impulse responses are compared to measurements in Large Monopolar Cells (LMCs) in the fly (Calliphora vicina) brain. Two different spatial stimuli (point source and wide field) were given at background intensities over a 5.5 log unit wide range. Theory and experiment correspond well, and they share the following properties: impulse responses get much faster and more biphasic with increasing background intensity (SNR); they show larger off-transients for wide field stimuli than for point sources; the half-width of the spatial receptive field changes only slightly with increased intensity, and lateral inhibition increases; contrast efficiency increases with intensity.

[1]  Stanford Goldman,et al.  Information theory , 1953 .

[2]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[3]  DeVerl S. Humpherys,et al.  The Analysis, Design, and Synthesis of Electrical Filters , 1970 .

[4]  A. Ziel Noise; sources, characterization, measurement , 1970 .

[5]  H. Olson Literature Review : NOISE: SOURCES, CHARACTERIZATION, MEASUREMENT Albert Van Der Ziel Prentice-Hall, Inc., Englewood Cliffs, N. J. (1970) , 1972 .

[6]  Rolf Schaumann The analysis, design and synthesis of electrical filters , 1976 .

[7]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[8]  S. Laughlin,et al.  Transducer noise in a photoreceptor , 1979, Nature.

[9]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[10]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[11]  H. Barlow Critical limiting factors in the design of the eye and visual cortex , 1981 .

[12]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[13]  S B Laughlin,et al.  Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. , 1981, The Journal of physiology.

[14]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[15]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  A. Snyder,et al.  Transduction as a limitation on compound eye function and design , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[18]  Horace Barlow,et al.  Understanding Natural Vision , 1983 .

[19]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) I. Organization of the Flight Motor , 1986 .

[20]  de Ruyter van Steveninck,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system , 1986 .

[21]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) III. Interactions Between Angular Movement Induced by Wide- and Smallfield Stimuli , 1986 .

[22]  H. Wagner Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets , 1986 .

[23]  R. Hengstenberg,et al.  Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[26]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[27]  Simon B. Laughlin,et al.  Form and function in retinal processing , 1987, Trends in Neurosciences.

[28]  J. H. Hateren,et al.  Photoreceptor Optics, Theory and Practice , 1989 .

[29]  Daniel Osorio,et al.  Mechanisms for Neural Signal Enhancement in the Blowfly Compound Eye , 1989 .

[30]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[31]  Daniel Osorio,et al.  Matched filtering in the visual system of the fly : large monopolar cells of the lamina are optimized to detect moving edges and blobs , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[32]  D. Turcotte,et al.  Fractal image analysis - Application to the topography of Oregon and synthetic images. , 1990 .

[33]  William H. Press,et al.  Numerical recipes , 1990 .

[34]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[35]  R. Glantz,et al.  Motion detection and adaptation in crayfish photoreceptors. A spatiotemporal analysis of linear movement sensitivity , 1991, The Journal of general physiology.

[36]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[37]  J. H. van Hateren,et al.  Neural superposition and oscillations in the eye of the blowfly , 1987, Journal of Comparative Physiology A.

[38]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[39]  S. Laughlin,et al.  Membrane parameters, signal transmission, and the design of a graded potential neuron , 1990, Journal of Comparative Physiology A.

[40]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[41]  H. Straka,et al.  Temporal resolving power of blowfly visual system: effects of decamethonium and hyperpolarization on responses of laminar monopolar neurons , 2004, Journal of Comparative Physiology A.

[42]  A. Dubs The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance , 1982, Journal of comparative physiology.

[43]  K. Norwich,et al.  An informational approach to sensory adaptation , 1991, Journal of Comparative Physiology A.

[44]  J. H. van Hateren,et al.  Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions , 1984, Journal of Comparative Physiology A.

[45]  J. H. van Hateren,et al.  Fast temporal adaptation of on-off units in the first optic chiasm of the blowfly , 2004, Journal of Comparative Physiology A.

[46]  J. H. Hateren,et al.  Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors , 1984, Journal of Comparative Physiology A.

[47]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[48]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[49]  R. Hardie,et al.  Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina , 1990, Journal of Comparative Physiology A.

[50]  J. H. van Hateren,et al.  Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly , 1986, Journal of Comparative Physiology A.

[51]  A. Dubs,et al.  The dynamics of phototransduction in insects , 1984, Journal of Comparative Physiology A.