Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips.

[1]  Robert Horvath,et al.  Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport. , 2014, Advances in colloid and interface science.

[2]  Robert Horvath,et al.  In-situ and label-free optical monitoring of the adhesion and spreading of primary monocytes isolated from human blood: dependence on serum concentration levels. , 2014, Biosensors & bioelectronics.

[3]  Zhongyi Jiang,et al.  Highly efficient covalent immobilization of catalase on titanate nanotubes , 2014 .

[4]  Jeremy J. Ramsden,et al.  Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor , 2014, Scientific Reports.

[5]  A. Kleinhammes,et al.  Self-assembly of protein-based biomaterials initiated by titania nanotubes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[6]  R. Horváth,et al.  Label-free optical monitoring of surface adhesion of extracellular vesicles by grating coupled interferometry , 2013 .

[7]  Robert Horvath,et al.  Optical anisotropy of flagellin layers: in situ and label-free measurement of adsorbed protein orientation using OWLS. , 2013, Analytical chemistry.

[8]  A. Scarpellini,et al.  Titanate nanotube coatings on biodegradable photopolymer scaffolds. , 2013, Materials science & engineering. C, Materials for biological applications.

[9]  Sheikh A. Akbar,et al.  Review of titania nanotubes: Fabrication and cellular response , 2012 .

[10]  Viktória Hornok,et al.  Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols , 2012 .

[11]  Vaclav Svorcik,et al.  Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. , 2011, Biotechnology advances.

[12]  S. Kurunczi,et al.  Interfacial properties of hydrophilized poly(lactic-co-glycolic acid) layers with various thicknesses. , 2011, Journal of colloid and interface science.

[13]  Lakshmi S. Nair,et al.  Titania Nanotubes: Novel Nanostructures for Improved Osseointegration , 2011 .

[14]  Ravi S Kane,et al.  Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms , 2011, Advanced materials.

[15]  Ewan Marshall,et al.  Advances in Atomic Force Microscopy in the 21 st Century , 2011 .

[16]  Amirreza Aref Spreading kinetics for quantifying cell state during stem cell differentiation , 2010 .

[17]  Yang Jiao,et al.  Size-Dependent Infiltration and Optical Detection of Nucleic Acids in Nanoscale Pores , 2010, IEEE Transactions on Nanotechnology.

[18]  Charles S. Fadley,et al.  X-ray photoelectron spectroscopy: Progress and perspectives , 2010 .

[19]  E. Borowiak‐Palen,et al.  Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method , 2010 .

[20]  R. Horváth,et al.  Optical biosensors for cell adhesion , 2009, Journal of receptor and signal transduction research.

[21]  Emeka Nkenke,et al.  In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[22]  J. Sipe,et al.  Nanoscale porous silicon waveguide for label-free DNA sensing. , 2008, Biosensors & bioelectronics.

[23]  Maryam Tabrizian,et al.  Sensing surfaces : Challenges in studying the cell adhesion process and the cell adhesion forces on biomaterials , 2008 .

[24]  A. Székács,et al.  Optical Waveguide Lightmode Spectroscopy (OWLS) Immunosensors for Environmental Monitoring , 2008 .

[25]  T. Benyattou,et al.  Bragg surface wave device based on porous silicon and its application for sensing , 2007 .

[26]  M. Váradi,et al.  Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. , 2007, Biosensors & bioelectronics.

[27]  G. Goch,et al.  The Design and Manufacture of Biomedical Surfaces , 2007 .

[28]  David Farrar,et al.  Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. , 2006, Journal of the American Chemical Society.

[29]  K. Hidajat,et al.  Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[30]  I. Rubinstein,et al.  Role of nanotechnology in targeted drug delivery and imaging: a concise review. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[31]  G. Hughes,et al.  Nanostructure-mediated drug delivery. , 2005, Disease-a-month : DM.

[32]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[33]  Chad A Mirkin,et al.  Nanostructures in biodefense and molecular diagnostics , 2004, Expert review of molecular diagnostics.

[34]  T. Webster,et al.  Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. , 2004, Journal of biomedical materials research. Part A.

[35]  H. Klok,et al.  Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. , 2004, Macromolecular bioscience.

[36]  Tze-Wen Chung,et al.  Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. , 2003, Biomaterials.

[37]  H. C. Pedersen,et al.  Optical waveguide sensor for on-line monitoring of bacteria. , 2003, Optics letters.

[38]  R. Horváth,et al.  Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition. , 2003, Biosensors & bioelectronics.

[39]  Jeffrey Schwartz,et al.  Cell attachment and spreading on metal implant materials , 2003 .

[40]  J E Prenosil,et al.  Optical waveguide lightmode spectroscopy (OWLS) to monitor cell proliferation quantitatively. , 2002, Biotechnology and bioengineering.

[41]  M. Textor,et al.  Optical grating coupler biosensors. , 2002, Biomaterials.

[42]  R. Haag,et al.  Dendritic polyglycerol: a new versatile biocompatible-material. , 2002, Journal of biotechnology.

[43]  M. Morbidelli,et al.  Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. , 2001, Biosensors & bioelectronics.

[44]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[45]  George M. Whitesides,et al.  Polymeric Thin Films That Resist the Adsorption of Proteins and the Adhesion of Bacteria , 2001 .

[46]  Marcus Textor,et al.  Poly(l-lysine)-g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption , 2001 .

[47]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures , 1999 .

[48]  M. Houška,et al.  Immobilisation of multilayer bioreceptor assemblies on solid substrates. , 1998, Biosensors & bioelectronics.

[49]  Kinam Park,et al.  Prevention of Protein Adsorption by Tethered Poly(ethylene oxide) Layers: Experiments and Single-Chain Mean-Field Analysis , 1998 .

[50]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[51]  E. Landau,et al.  The Hofmeister series: salt and solvent effects on interfacial phenomena , 1997, Quarterly Reviews of Biophysics.

[52]  M Degrange,et al.  Correlation between substratum roughness and wettability, cell adhesion, and cell migration. , 1997, Journal of biomedical materials research.

[53]  M. Salmeron,et al.  Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. , 1997, Chemical reviews.

[54]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[55]  M. Textor,et al.  Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption , 1997 .

[56]  Jr. G.E. Jellison,et al.  Spectroscopic ellipsometry data analysis : measured versus calculated quantities , 1997 .

[57]  Ramsden,et al.  Kinetics of Human and Bovine Serum Albumin Adsorption at Silica-Titania Surfaces , 1997, Journal of colloid and interface science.

[58]  A. Archakov,et al.  Immobilization of proteins to lipid bilayers. , 1996, Biosensors & bioelectronics.

[59]  J. Ramsden,et al.  Experimental methods for investigating protein adsorption kinetics at surfaces , 1994, Quarterly Reviews of Biophysics.

[60]  Gerald Earle Jellison,et al.  Data analysis for spectroscopic ellipsometry , 1993 .

[61]  J. Ramsden,et al.  Pulsed photoelectrochemistry of titanium dioxide , 1990 .

[62]  W. Lukosz,et al.  Sensitivity of grating couplers as integrated-optical chemical sensors , 1989 .

[63]  P. G. Snyder,et al.  Variable angle spectroscopic ellipsometry: A non-destructive characterization technique for ultrathin and multilayer materials☆ , 1988 .

[64]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[65]  A. Vespucci,et al.  Biocompatibility testing of prosthetic implant materials by cell cultures. , 1985, Biomaterials.

[66]  P. W. Langhoff,et al.  Padé Summation of the Cauchy Dispersion Equation , 1969 .

[67]  Francis Arthur Jenkins,et al.  Fundamentals of Optics , 1976 .