Refining Landauer's Stack: Balancing Error and Dissipation When Erasing Information

Nonequilibrium information thermodynamics determines the minimum energy dissipation to reliably erase memory under time-symmetric control protocols. We demonstrate that its bounds are tight and so show that the costs overwhelm those implied by Landauer’s energy bound on information erasure. Moreover, in the limit of perfect computation, the costs diverge. The conclusion is that time-asymmetric protocols should be developed for efficient, accurate thermodynamic computing. And, that Landauer’s Stack—the full suite of theoretically-predicted thermodynamic costs—is ready for experimental test and calibration.

[1]  James P. Crutchfield,et al.  Transient Dissipation and Structural Costs of Physical Information Transduction , 2017, Physical review letters.

[2]  R. Sun,et al.  Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice , 2019, Nature Communications.

[3]  Rainer Klages,et al.  Nonequilibrium statistical physics of small systems : fluctuation relations and beyond , 2013 .

[4]  J. Bechhoefer,et al.  Finite-Time Landauer Principle. , 2020, Physical review letters.

[5]  James P. Crutchfield,et al.  Balancing Error and Dissipation in Computing , 2019 .

[6]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[7]  H. J. M. Hanley,et al.  Experimental Verification of the , 1965 .

[8]  James P. Crutchfield,et al.  Above and Beyond the Landauer Bound: Thermodynamics of Modularity , 2017, Physical Review X.

[9]  Scott Dhuey,et al.  Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits , 2016, Science Advances.

[10]  J. Crutchfield,et al.  Fluctuations When Driving Between Nonequilibrium Steady States , 2016, 1610.09444.

[11]  E. Lutz,et al.  Memory erasure in small systems. , 2008, Physical review letters.

[12]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[13]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[14]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[15]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  Massimiliano Esposito,et al.  Thermodynamics of Majority-Logic Decoding in Information Erasure , 2019, Entropy.

[18]  A. B. Boyd,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2015, 1507.01537.

[19]  Eduardo Pinheiro,et al.  DRAM errors in the wild: a large-scale field study , 2009, SIGMETRICS '09.

[20]  Jeremy L. England Dissipative adaptation in driven self-assembly. , 2015, Nature nanotechnology.

[21]  D. Wolpert,et al.  Dependence of dissipation on the initial distribution over states , 2016, 1607.00956.

[22]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Susanne Still,et al.  Thermodynamic Cost and Benefit of Memory. , 2017, Physical review letters.

[24]  Jordan M. Horowitz,et al.  Quantifying dissipation using fluctuating currents , 2019, Nature Communications.

[25]  T. Sagawa Thermodynamics of Information Processing in Small Systems , 2012 .

[26]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[27]  Michael M. Wolf,et al.  An improved Landauer principle with finite-size corrections , 2013, 1306.4352.

[28]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[29]  J. Bechhoefer,et al.  Optimal finite-time bit erasure under full control. , 2020, Physical review. E.

[30]  John Bechhoefer,et al.  Erasing a majority-logic bit , 2020 .

[31]  Momčilo Gavrilov High-Precision Test of Landauer’s Principle , 2017 .

[32]  Yuhai Tu,et al.  The energy-speed-accuracy tradeoff in sensory adaptation , 2012, Nature Physics.

[33]  Patrick R. Zulkowski,et al.  Optimal control of overdamped systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Patrick R. Zulkowski,et al.  Optimal protocols for driven quantum systems , 2015 .

[35]  Editors , 2003 .

[36]  James P. Crutchfield,et al.  Thermodynamically-Efficient Local Computation and the Inefficiency of Quantum Memory Compression , 2020 .

[37]  C. Jarzynski Hamiltonian Derivation of a Detailed Fluctuation Theorem , 1999, cond-mat/9908286.

[38]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[39]  Patrick R. Zulkowski,et al.  Optimal finite-time erasure of a classical bit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[41]  J. Parrondo,et al.  Lower bounds on dissipation upon coarse graining. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Surya Ganguli,et al.  A universal tradeoff between power, precision and speed in physical communication , 2016, ArXiv.

[43]  Paul M. Riechers,et al.  Transforming Metastable Memories: The Nonequilibrium Thermodynamics of Computation , 2018, The Energetics of Computing in Life and Machines.

[44]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[45]  Manoj Gopalkrishnan A Cost/Speed/Reliability Tradeoff to Erasing , 2015, UCNC.

[46]  John Shalf,et al.  The future of computing beyond Moore’s Law , 2020, Philosophical Transactions of the Royal Society A.

[47]  Christof Teuscher,et al.  Thermodynamic Computing , 2019, ArXiv.