A Control Approach for Actuated Dynamic Walking in Biped Robots

This paper presents an approach for the closed-loop control of a fully actuated biped robot that leverages its natural dynamics when walking. Rather than prescribing kinematic trajectories, the approach proposes a set of state-dependent torques, each of which can be constructed from a combination of low-gain spring-damper couples. Accordingly, the limb motion is determined by interaction of the passive control elements and the natural dynamics of the biped, rather than being dictated by a reference trajectory. In order to implement the proposed approach, the authors develop a model-based transformation from the control torques that are defined in a mixed reference frame to the actuator joint torques. The proposed approach is implemented in simulation on an anthropomorphic biped. The simulated biped is shown to converge to a stable, natural-looking walk from a variety of initial configurations. Based on these simulations, the mechanical cost of transport is computed and shown to be significantly lower than that of trajectory-tracking approaches to biped control, thus validating the ability of the proposed idea to provide efficient dynamic walking. Simulations further demonstrate walking at varying speeds and on varying ground slopes. Finally, controller robustness is demonstrated with respect to forward and backward push-type disturbances and with respect to uncertainty in model parameters.

[1]  Carlos Canudas-de-Wit,et al.  On the concept of virtual constraints as a tool for walking robot control and balancing , 2004, Annu. Rev. Control..

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  Christophe Sabourin,et al.  Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks , 2005, Robotics Auton. Syst..

[4]  Masayuki Inaba,et al.  A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot , 2002, Auton. Robots.

[5]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[6]  David A. Winter,et al.  Biomechanics and Motor Control of Human Movement , 1990 .

[7]  G. Stavroulakis Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .

[8]  B. Brogliato,et al.  Numerical simulation of finite dimensional multibody nonsmooth mechanical systems , 2001 .

[9]  M. Vukobratovic,et al.  On the stability of anthropomorphic systems , 1972 .

[10]  Florentin Wörgötter,et al.  Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning , 2006, Int. J. Robotics Res..

[11]  J. Moreau Quadratic Programming in Mechanics: Dynamics of One-Sided Constraints , 1966 .

[12]  L. Lilov,et al.  Dynamic Analysis of Multirigid-Body System Based on the Gauss Principle , 1982 .

[13]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[14]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[15]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[16]  H. Hemami,et al.  Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane , 1979 .

[17]  Florentin Wörgötter,et al.  Correction: Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..

[18]  R. Kalaba,et al.  Analytical Dynamics: A New Approach , 1996 .

[19]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .

[20]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[21]  C. Shih The dynamics and control of a biped walking robot with seven degrees of freedom , 1996 .

[22]  Gordon Cheng,et al.  Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces , 2007, IEEE Transactions on Robotics.

[23]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[24]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[25]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[26]  Christine Chevallereau,et al.  Stable Bipedal Walking With Foot Rotation Through Direct Regulation of the Zero Moment Point , 2008, IEEE Transactions on Robotics.

[27]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[28]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[29]  T. McMahon,et al.  Ballistic walking: an improved model , 1980 .

[30]  Fumiya Iida,et al.  Toward a human-like biped robot with compliant legs , 2009, Robotics Auton. Syst..

[31]  Florentin Wörgötter,et al.  Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..

[32]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[33]  Martijn Wisse,et al.  Passive-Based Walking Robot , 2007, IEEE Robotics & Automation Magazine.

[34]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[35]  Gene H. Golub,et al.  Matrix computations , 1983 .

[36]  M. Coleman,et al.  An Uncontrolled Walking Toy That Cannot Stand Still , 1998 .

[37]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[38]  Atsuo Takanishi,et al.  A control method for dynamic biped walking under unknown external force , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[39]  R. Kalaba,et al.  A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[40]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[41]  Yoshihiko Nakamura,et al.  Whole-body cooperative balancing of humanoid robot using COG Jacobian , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[43]  Arthur D. Kuo,et al.  Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.

[44]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[45]  M. Vukobratovic,et al.  Biped Locomotion , 1990 .

[46]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[47]  Werner Schiehlen,et al.  Walking Without Impacts as a Motion/Force Control Problem , 1992 .

[48]  C. F. Gauss,et al.  Über ein neues allgemeines Grundgesetz der Mechanik. , 2022 .

[49]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[50]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.