A Control Approach for Actuated Dynamic Walking in Biped Robots
暂无分享,去创建一个
[1] Carlos Canudas-de-Wit,et al. On the concept of virtual constraints as a tool for walking robot control and balancing , 2004, Annu. Rev. Control..
[2] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[3] Christophe Sabourin,et al. Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks , 2005, Robotics Auton. Syst..
[4] Masayuki Inaba,et al. A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot , 2002, Auton. Robots.
[5] Franck Plestan,et al. Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..
[6] David A. Winter,et al. Biomechanics and Motor Control of Human Movement , 1990 .
[7] G. Stavroulakis. Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .
[8] B. Brogliato,et al. Numerical simulation of finite dimensional multibody nonsmooth mechanical systems , 2001 .
[9] M. Vukobratovic,et al. On the stability of anthropomorphic systems , 1972 .
[10] Florentin Wörgötter,et al. Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning , 2006, Int. J. Robotics Res..
[11] J. Moreau. Quadratic Programming in Mechanics: Dynamics of One-Sided Constraints , 1966 .
[12] L. Lilov,et al. Dynamic Analysis of Multirigid-Body System Based on the Gauss Principle , 1982 .
[13] Leopold Alexander Pars,et al. A Treatise on Analytical Dynamics , 1981 .
[14] Chee-Meng Chew,et al. Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..
[15] Dan B. Marghitu,et al. Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..
[16] H. Hemami,et al. Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane , 1979 .
[17] Florentin Wörgötter,et al. Correction: Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..
[18] R. Kalaba,et al. Analytical Dynamics: A New Approach , 1996 .
[19] C. F. Gauss,et al. Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .
[20] Friedrich Pfeiffer,et al. Multibody Dynamics with Unilateral Contacts , 1996 .
[21] C. Shih. The dynamics and control of a biped walking robot with seven degrees of freedom , 1996 .
[22] Gordon Cheng,et al. Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces , 2007, IEEE Transactions on Robotics.
[23] Ambarish Goswami,et al. Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..
[24] Russ Tedrake,et al. Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.
[25] Franck Plestan,et al. Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..
[26] Christine Chevallereau,et al. Stable Bipedal Walking With Foot Rotation Through Direct Regulation of the Zero Moment Point , 2008, IEEE Transactions on Robotics.
[27] Reinhard Blickhan,et al. Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.
[28] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[29] T. McMahon,et al. Ballistic walking: an improved model , 1980 .
[30] Fumiya Iida,et al. Toward a human-like biped robot with compliant legs , 2009, Robotics Auton. Syst..
[31] Florentin Wörgötter,et al. Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning , 2007, PLoS Comput. Biol..
[32] KangKang Yin,et al. SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..
[33] Martijn Wisse,et al. Passive-Based Walking Robot , 2007, IEEE Robotics & Automation Magazine.
[34] Keith L. Doty,et al. A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..
[35] Gene H. Golub,et al. Matrix computations , 1983 .
[36] M. Coleman,et al. An Uncontrolled Walking Toy That Cannot Stand Still , 1998 .
[37] T. Takenaka,et al. The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[38] Atsuo Takanishi,et al. A control method for dynamic biped walking under unknown external force , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.
[39] R. Kalaba,et al. A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[40] Bernard Brogliato,et al. Modeling, stability and control of biped robots - a general framework , 2004, Autom..
[41] Yoshihiko Nakamura,et al. Whole-body cooperative balancing of humanoid robot using COG Jacobian , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.
[42] Kazuhito Yokoi,et al. Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..
[43] Arthur D. Kuo,et al. Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.
[44] Christine Chevallereau,et al. RABBIT: a testbed for advanced control theory , 2003 .
[45] M. Vukobratovic,et al. Biped Locomotion , 1990 .
[46] Tad McGeer,et al. Passive Dynamic Walking , 1990, Int. J. Robotics Res..
[47] Werner Schiehlen,et al. Walking Without Impacts as a Motion/Force Control Problem , 1992 .
[48] C. F. Gauss,et al. Über ein neues allgemeines Grundgesetz der Mechanik. , 2022 .
[49] Daniel E. Koditschek,et al. Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..
[50] M. Coleman,et al. The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.