Numerical computations for antiplane shear in a granular flow model

The algorithm is a second order Godunov method. For these models the eigenvalues associated to the hyperbolic system are discontinuous

[1]  Alexandre J. Chorin,et al.  Random choice solution of hyperbolic systems , 1976 .

[2]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[3]  Oliver A. McBryan,et al.  Front Tracking for Gas Dynamics , 1984 .

[4]  Eric Varley Propagation of shock waves in solids : presented at the Applied Mechanics Conference, Salt Lake City, Utah, June 14-17, 1976 , 1976 .

[5]  John A. Trangenstein,et al.  Numerical algorithms for strong discontinuities in elastic-plastic solids , 1992 .

[6]  E. Lee,et al.  A boundary value problem in the theory of plastic wave propagation , 1953 .

[7]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[8]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[9]  David G. Schaeffer,et al.  Numerical computations for shear bands in an antiplane shear model , 1994 .

[10]  David G. Schaeffer,et al.  Scale-invariant initial value problems in one-dimensional dynamic elastoplasticity, with consequences for multidimensional nonassociative plasticity , 1992, European Journal of Applied Mathematics.

[11]  C. Moler,et al.  Elementary interactions in quasi-linear hyperbolic systems , 1970 .

[12]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[13]  James Glimm,et al.  Front tracking for hyperbolic systems , 1981 .

[14]  David G. Schaeffer,et al.  A mathematical model for localization in granular flow , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .