Two-Dimensional Measurement of Airborne Ultrasound Field Using Thermal Images

[1]  A. Marzo,et al.  Adjusting single-axis acoustic levitators in real time using rainbow schlieren deflectometry. , 2021, The Review of scientific instruments.

[2]  Asier Marzo,et al.  Acoustic levitation in mid-air: Recent advances, challenges, and future perspectives , 2020 .

[3]  Diego Martinez Plasencia,et al.  A volumetric display for visual, tactile and audio presentation using acoustic trapping , 2019, Nature.

[4]  H. Shinoda,et al.  Curved acceleration path of ultrasound-driven air flow , 2019, Journal of Applied Physics.

[5]  Peng Li,et al.  Acoustic tweezers for the life sciences , 2018, Nature Methods.

[6]  T. Qiu,et al.  Fast spatial scanning of 3D ultrasound fields via thermography , 2018, Applied Physics Letters.

[7]  M. Qian,et al.  Three-dimensional reconstruction of nonplanar ultrasound fields using Radon transform and the schlieren imaging method. , 2017, The Journal of the Acoustical Society of America.

[8]  Sriram Subramanian,et al.  Holographic acoustic elements for manipulation of levitated objects , 2015, Nature Communications.

[9]  M. Myers,et al.  Quantitative estimation of ultrasound beam intensities using infrared thermography-Experimental validation. , 2012, The Journal of the Acoustical Society of America.

[10]  M. Myers,et al.  Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography. , 2011, The Journal of the Acoustical Society of America.

[11]  T. J. Cavicchi,et al.  Heat generated by ultrasound in an absorbing medium. , 1984, The Journal of the Acoustical Society of America.