Light cones for open quantum systems

We consider Markovian open quantum dynamics (MOQD). We show that, up to small-probability tails, the supports of quantum states evolving under such dynamics propagate with finite speed in any finite-energy subspace. More precisely, we prove that if the initial quantum state is localized in space, then any finite-energy part of the solution of the von Neumann-Lindblad equation is approximately localized inside an energy-dependent light cone. We also obtain an explicit upper bound for the slope of this light cone.

[1]  J. Cirac,et al.  Long-Range Free Fermions: Lieb-Robinson Bound, Clustering Properties, and Topological Phases. , 2022, Physical review letters.

[2]  F. Pusateri,et al.  Maximal speed of quantum propagation for the Hartree equation , 2023, Communications in Partial Differential Equations.

[3]  I. Sigal,et al.  On propagation of information in quantum many-body systems , 2022, 2212.14472.

[4]  Israel Michael Sigal,et al.  Maximal Speed for Macroscopic Particle Transport in the Bose-Hubbard Model. , 2021, Physical review letters.

[5]  I. Sigal,et al.  On Lieb–Robinson Bounds for the Bose–Hubbard Model , 2021, Communications in Mathematical Physics.

[6]  A. Lucas,et al.  Finite Speed of Quantum Information in Models of Interacting Bosons at Finite Density , 2021, Physical Review X.

[7]  Minh C. Tran,et al.  Lieb-Robinson Light Cone for Power-Law Interactions. , 2021, Physical review letters.

[8]  A. Soffer,et al.  Maximal speed of quantum propagation , 2020, Letters in Mathematical Physics.

[9]  K. Hazzard,et al.  Tightening the Lieb-Robinson Bound in Locally Interacting Systems , 2019, PRX Quantum.

[10]  D. Borthwick Schrödinger Operators , 2020, Graduate Texts in Mathematics.

[11]  B. Nachtergaele,et al.  Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms , 2018, Journal of Mathematical Physics.

[12]  B. Nachtergaele,et al.  Lieb-Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems , 2017, 1705.08553.

[13]  K. Birgitta Whaley,et al.  Quantum speed limits for quantum-information-processing tasks , 2016, 1612.04767.

[14]  J. Fröhlich,et al.  Scattering Theory for Lindblad Master Equations , 2016, Communications in Mathematical Physics.

[15]  Alexey V Gorshkov,et al.  Nearly linear light cones in long-range interacting quantum systems. , 2014, Physical review letters.

[16]  Anna Vershynina,et al.  Lieb-Robinson bounds , 2013, Scholarpedia.

[17]  I. Sigal,et al.  Maximal velocity of photons in non-relativistic QED , 2011, 1110.3965.

[18]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics , 2011, 1103.1122.

[19]  J. Eisert,et al.  Information propagation for interacting-particle systems , 2010, 1010.4576.

[20]  David Poulin,et al.  Lieb-Robinson bound and locality for general markovian quantum dynamics. , 2010, Physical review letters.

[21]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems , 2007, 0712.3820.

[22]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[23]  S. Golénia,et al.  A New Look at Mourre’s Commutator Theory , 2006, math/0607275.

[24]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and the Exponential Clustering Theorem , 2005, math-ph/0506030.

[25]  M. Hastings,et al.  Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance , 2005, cond-mat/0503554.

[26]  M. Hastings Lieb-Schultz-Mattis in higher dimensions , 2003, cond-mat/0305505.

[27]  M. Sentís Quantum theory of open systems , 2002 .

[28]  I. Sigal,et al.  Time-Dependent Scattering Theory of N-Body Quantum Systems , 2000 .

[29]  I. Sigal,et al.  MINIMAL ESCAPE VELOCITIES , 2000, math-ph/0002013.

[30]  I. Herbst,et al.  Free channel fourier transform in the long-rangen-body problem , 1995 .

[31]  J. D. ski Asymptotic completeness of long-range N-body quantum systems , 1993 .

[32]  A. Soffer,et al.  Long-range many-body scattering , 1990 .

[33]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[34]  R. Ingarden,et al.  On the connection of nonequilibrium information thermodynamics with non-hamiltonian quantum mechanics of open systems , 1975 .

[35]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[36]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .