Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

Abstract Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

[1]  Anuvat Sirivat,et al.  Polypyrrole/poly(methylmethacrylate) blend as selective sensor for acetone in lacquer. , 2003, Talanta.

[2]  T. Swager,et al.  Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. , 2008, Journal of the American Chemical Society.

[3]  Carles Cané,et al.  Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings , 2004 .

[4]  Anuvat Sirivat,et al.  Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms , 2004 .

[5]  P. Thiyagarajan,et al.  SANS study of micellar structure and interactions in Triton X-100 solutions , 1995 .

[6]  Wojtek Wlodarski,et al.  Polypyrrole nanofiber surface acoustic wave gas sensors , 2008 .

[7]  Chi-Yen Shen,et al.  Gas-detecting properties of surface acoustic wave ammonia sensors , 2004 .

[8]  A. Ivaska,et al.  A polypyrrole-based amperometric ammonia sensor. , 1996, Talanta.

[9]  T. Kunzelmann,et al.  Contactless surface acoustic wave gas sensor , 1999 .

[10]  J. Jang,et al.  Carbon nanofiber/polypyrrole nanocable as toxic gas sensor , 2007 .

[11]  R. Lennox,et al.  Nanoscale Polypyrrole Patterns Using Block Copolymer Surface Micelles as Templates , 2001 .

[12]  Zhongfan Liu,et al.  Controllable synthesis of conducting polypyrrole nanostructures. , 2006, The journal of physical chemistry. B.

[13]  Zhifeng Wang,et al.  Photoelectrochemical properties of polypyrrole/TiO2 nanotube arrays nanocomposite under visible light , 2012 .

[14]  Geng Li Preparation and Gas Sensitivity Study of Polypyrrole/Tin Oxide Hybrid Material , 2005 .

[15]  Norman M. Ratcliffe,et al.  Polypyrrole-based sensor for hydrazine and ammonia , 1990 .

[16]  W. Wlodarski,et al.  Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors—Effect of Nanofiber Diameter on $\hbox{H}_{2}$ Response , 2007, IEEE Sensors Journal.

[17]  Zdravko P. Khlebarov,et al.  Surface acoustic wave gas sensors , 1992 .

[18]  F. Mohammad,et al.  Compensation behaviour of electrically conductive polythiophene and polypyrrole , 1998 .

[19]  Wojtek Wlodarski,et al.  Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity , 2006 .

[20]  Harald Fuchs,et al.  Improving the SAW gas sensor: device, electronics and sensor layer , 1994 .

[21]  Li Fan,et al.  Influence of surface conductivity on sensitivity of acoustic wave gas sensors based on multilayered structures , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  S. K. Gupta,et al.  Ammonia sensing properties of polypyrrole thin films at room temperature , 2011 .

[23]  Dinesh K. Aswal,et al.  Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor , 2007 .

[24]  A. I. D. Río,et al.  Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW12O403− coating deposited on polyester fabrics , 2011 .

[25]  Peng Song,et al.  Ammonia gas sensor based on PPy/ZnSnO3 nanocomposites , 2011 .

[26]  Chuanqiang Zhou,et al.  Fabrication of poly(aniline‐co‐pyrrole) hollow nanospheres with Triton X‐100 micelles as templates , 2008 .

[27]  M. Penza,et al.  SAW gas detection using Langmuir–Blodgett polypyrrole films , 1998 .

[28]  Derck Schlettwein,et al.  Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap , 2004 .

[29]  Wojtek Wlodarski,et al.  Layered SAW hydrogen sensor with modified tungsten trioxide selective layer , 2005 .

[30]  Jaroslav Stejskal,et al.  Synthesis and structural study of polypyrroles prepared in the presence of surfactants , 2003 .

[31]  Joon Hak Oh,et al.  A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes. , 2004, Chemical communications.

[32]  Anuvat Sirivat,et al.  Selective conductivity response of polypyrrole-based sensor on flammable chemicals , 2004 .

[33]  B. H. Weiller,et al.  Hydrogen sensors based on conductivity changes in polyaniline nanofibers. , 2006, The journal of physical chemistry. B.

[34]  Naif H. Al-Hardan,et al.  The gas response enhancement from ZnO film for H2 gas detection , 2009 .

[35]  H. Fröhlich,et al.  Mass sensitivity of temperature-stabilized surface acoustic wave delay lines on GaAs , 1995 .

[36]  M. K. Andrews,et al.  Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose , 2002 .

[37]  Li Fan,et al.  Optimization of sensitivity induced by surface conductivity and sorbed mass in surface acoustic wave gas sensors , 2012 .

[38]  Richard J. Ewen,et al.  The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities , 2002 .