Fredholm Determinant Evaluations of the Ising Model Diagonal Correlations and their λ Generalization

The diagonal spin–spin correlations of the square lattice Ising model, originally expressed as Toeplitz determinants, are given by two distinct Fredholm determinants—one with an integral operator having an Appell function kernel and another with a summation operator having a Gauss hypergeometric function kernel. Either determinant allows for a Neumann expansion possessing a natural λ‐parameter generalization and we prove that both expansions are in fact equal, implying a continuous and a discrete representation of the form factors. Our proof employs an extension of the classic study by Geronimo and Case [ 1 ], applying scattering theory to orthogonal polynomial systems on the unit circle, to the bi‐orthogonal situation.

[1]  R. Baxter Onsager and Kaufman’s Calculation of the Spontaneous Magnetization of the Ising Model , 2011, 1103.3347.

[2]  P. Forrester Log-Gases and Random Matrices , 2010 .

[3]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[4]  A. Guttmann,et al.  Form factor expansions in the 2D Ising model and Painlevé VI , 2010, 1002.2480.

[5]  R. Vidunas On singular univariate specializations of bivariate hypergeometric functions , 2009, 0906.1861.

[6]  Specialization of Appell's functions to univariate hypergeometric functions , 2009 .

[7]  N. S. Witte,et al.  Bi-orthogonal systems on the unit circle, regular semi-classical weights and integrable systems - II , 2008, J. Approx. Theory.

[8]  A. Klumper,et al.  From Multiple Integrals to Fredholm Determinants , 2007, 0710.1814.

[9]  B. McCoy,et al.  The diagonal Ising susceptibility , 2007, math-ph/0703009.

[10]  B. McCoy,et al.  Form factor expansion of the row and diagonal correlation functions of the two-dimensional Ising model , 2006, math-ph/0612051.

[11]  B. McCoy,et al.  Holonomy of the Ising model form factors , 2006, math-ph/0609074.

[12]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[13]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[14]  P. Forrester,et al.  Discrete Painlevé equations for a class of PVI τ-functions given as U(N) averages , 2004, math-ph/0412065.

[15]  P. Forrester,et al.  Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-Classical Weights and Integrable Systems , 2004, math/0412394.

[16]  Yu. M. Zinoviev,et al.  Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .

[17]  J. Harnad,et al.  Integrable Fredholm Operators and Dual Isomonodromic Deformations , 1997, solv-int/9706002.

[18]  O. Lisovyy,et al.  Correlation Function of the Two-Dimensional Ising Model on a Finite Lattice: II , 2004, 0708.3643.

[19]  A. Borodin Discrete gap probabilities and discrete Painlevé equations , 2001, math-ph/0111008.

[20]  A. Guttmann,et al.  The Susceptibility of the Square Lattice Ising Model: New Developments , 2001, cond-mat/0103074.

[21]  A. I. Bugrij,et al.  The correlation function in two dimensional Ising model on the finite size lattice. I , 2000, hep-th/0011104.

[22]  Alexei Borodin,et al.  A Fredholm determinant formula for Toeplitz determinants , 1999, math/9907165.

[23]  Gerard Brady,et al.  Errata , 1897, Current Biology.

[24]  Mourad E. H. Ismail,et al.  Relation between polynomials orthogonal on the unit circle with respect to different weights , 1992 .

[25]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[26]  K. Aomoto,et al.  Jacobi polynomials associated with Selberg integrals , 1987 .

[27]  K. Case,et al.  Scattering theory and polynomials orthogonal on the unit circle , 1979 .

[28]  Hugh Christopher Longuet-Higgins,et al.  Lars Onsager, 27 November - 5 October 1976 , 1978, Biographical Memoirs of Fellows of the Royal Society.

[29]  佐藤 幹夫,et al.  Studies on Holonomic Quantum Fields (超局所解析) , 1977 .

[30]  S. W. Fox Lars Onsager (1903-1976). , 1977, Bio Systems.

[31]  C. Tracy,et al.  Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region , 1976 .

[32]  T. Wu,et al.  Theory of Toeplitz Determinants and the Spin Correlations of the Two-Dimensional Ising Model. III , 1967 .

[33]  D. Lambie,et al.  Modern Analysis , 1966, Nature.

[34]  G. Baxter Polynomials defined by a difference system , 1960 .

[35]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[36]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[37]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[38]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[39]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[40]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .