Computational Studies of Filamentary Pattern Formation in a High Power Microwave Breakdown Generated Air Plasma

Simulations of the dynamics of high power microwave breakdown of air at atmospheric pressure and 110 GHz are presented. The model reproduces well the formation and motion of filamentary plasma arrays observed experimentally with fast camera imaging. The numerical model is based on finite-difference time domain solutions of Maxwell equations coupled with a simple fluid description of the plasma growth and diffusion. The computational procedure is discussed in details along with numerical experiments, to show the sensitivity of the results to different numerical parameters.

[1]  Svilen Sabchevski,et al.  The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range — A review of novel and prospective applications , 2008 .

[2]  C. Punset,et al.  Self-organized filaments in dielectric barrier glow discharges , 1999 .

[3]  G. Herring,et al.  Microwave air breakdown enhanced with metallic initiators , 2008 .

[4]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[5]  A. D. Macdonald Microwave breakdown in gases , 1966 .

[6]  M. Shapiro,et al.  Imaging of Atmospheric Air Breakdown Caused by a High-Power 110-GHz Pulsed Gaussian Beam , 2008, IEEE Transactions on Plasma Science.

[7]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[8]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[9]  C. Postel,et al.  Nanosecond Scale Discharge Dynamics in High Pressure Air , 2008, IEEE Transactions on Plasma Science.

[10]  Jean-Pierre Boeuf,et al.  Theory and modeling of self-organization and propagation of filamentary plasma arrays in microwave breakdown at atmospheric pressure. , 2010, Physical review letters.

[11]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[12]  V. Bychkov,et al.  Thermal ionization instability of an air discharge plasma in a microwave field , 2007 .

[13]  A. Rousseau,et al.  Patterns of Plasma Filaments Propagating on a Dielectric Surface , 2008, IEEE Transactions on Plasma Science.

[14]  J. Boeuf,et al.  Measurement and 3D simulation of self-organized filaments in a barrier discharge. , 2006, Physical review letters.

[15]  John H. Booske,et al.  Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa) , 2008 .

[16]  L. Loeb,et al.  The Mechanism of Spark Discharge in Air at Atmospheric Pressure. I , 1940 .

[17]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[18]  Steven A. Cummer,et al.  An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy , 1997 .

[19]  M. A. Shapiro,et al.  Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron , 2009 .

[20]  S. G. Malyk,et al.  A spherical plasmoid with a diffuse boundary in a linearly polarized quasistatic electromagnetic field , 2001 .

[21]  Yoshiteru Hidaka,et al.  Observation of large arrays of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron pulses. , 2008, Physical review letters.

[22]  D. Van Wie,et al.  Surface Discharge in a Microwave Beam , 2007, IEEE Transactions on Plasma Science.

[23]  V. Bityurin,et al.  Electrodynamic model of a microwave streamer , 2009 .

[24]  U. Ebert,et al.  Positive Streamers in Ambient Air and a $\hbox{N}_{2}\!:\!\hbox{O}_{2}$ Mixture (99.8 :  0.2) , 2008, IEEE Transactions on Plasma Science.

[25]  R. Cardoso,et al.  Filamentation in argon microwave plasma at atmospheric pressure , 2009 .

[26]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..