Call-by-Value Lambda Calculus as a Model of Computation in Coq
暂无分享,去创建一个
[1] Ugo Dal Lago,et al. The weak lambda calculus as a reasonable machine , 2008, Theor. Comput. Sci..
[2] Alberto Ciaffaglione,et al. Towards Turing computability via coinduction , 2016, Sci. Comput. Program..
[3] Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq , 2017, ITP.
[4] Michael Norrish. Mechanised Computability Theory , 2011, ITP.
[5] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems , 1944 .
[6] Ugo Dal Lago,et al. On the Invariance of the Unitary Cost Model for Head Reduction (Long Version) , 2012, RTA.
[7] Andrej Bauer,et al. First Steps in Synthetic Computability Theory , 2006, MFPS.
[8] Jian Xu,et al. Mechanising Turing Machines and Computability Theory in Isabelle/HOL , 2013, ITP.
[9] Andrea Asperti,et al. A formalization of multi-tape Turing machines , 2015, Theor. Comput. Sci..
[10] Joachim Niehren,et al. Functional computation as concurrent computation , 1996, POPL '96.
[11] Björn Victor,et al. A Sorted Semantic Framework for Applied Process Calculi , 2013, Log. Methods Comput. Sci..
[12] Hugo Herbelin,et al. An Intuitionistic Logic that Proves Markov's Principle , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[13] Ugo Dal Lago,et al. (Leftmost-Outermost) Beta Reduction is Invariant, Indeed , 2016, Log. Methods Comput. Sci..
[14] P. Boas. Machine models and simulations , 1991 .
[15] George Boolos,et al. Computability and logic , 1974 .
[16] Andrea Asperti,et al. Formalizing Turing Machines , 2012, WoLLIC.
[17] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[18] R. Friedberg,et al. TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[19] Thierry Coquand,et al. The Independence of Markov's Principle in Type Theory , 2016, Log. Methods Comput. Sci..
[20] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[21] Dexter Kozen,et al. Automata and Computability , 1997, Undergraduate Texts in Computer Science.
[22] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[23] Torben Æ. Mogensen. Efficient self-interpretation in lambda calculus , 1992, Journal of Functional Programming.
[24] Gert Smolka,et al. Weak Call-by-Value Lambda Calculus as a Model of Computation in Coq , 2017, ITP.
[25] Emil L. Post. A variant of a recursively unsolvable problem , 1946 .
[26] Jan Martin Jansen. Programming in the λ-Calculus: From Church to Scott and Back , 2013, The Beauty of Functional Code.