Global existence for semilinear parabolic systems.

On etudie des problemes aux valeurs limites et initiales paraboliques semilineaires de la forme: ∂u/∂t+A(t) u=f(t,x,u,Du,..., D 2m−1 u) dans Ω×(t 0 ,∞) B(t)u=0 sur ∂Ω×(t 0 ,∞), u(.,t 0 )=u 0 sur Ω, ou Ω est un domaine de R n

[1]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[2]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[3]  Tosio Kato A Spectral Mapping Theorem for the Exponential Function, and Some Counterexamples. , 1982 .

[4]  R. Goebel Über die Existenz klassischer Lösungen semilinearer parabolischer Differentialgleichungen höherer Ordnung , 1983 .

[5]  Felix E. Browder,et al.  On the spectral theory of elliptic differential operators. I , 1961 .

[6]  Reinhard Redlinger Pointwise A-Priori Bounds for Strongly Coupled Semilinear Parabolic Systems. , 1986 .

[7]  D. G. Figueiredo The coerciveness problem for forms over vector valued functions , 1963 .

[8]  Klassische Lösungen im Großen semilinearer parabolischer Differentialgleichungen , 1975 .

[9]  F. Rothe Uniform bounds from bounded Lp-functionals in reaction-diffusion equations , 1982 .

[10]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[11]  Herbert Amann,et al.  Invariant Sets and Existence Theorems for Semilinear Parabolic and Elliptic Systems , 1978 .

[12]  J. Lions,et al.  Problemi ai limiti non omogenei (I) , 1961 .

[13]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[14]  N. Alikakos Quantitative maximum principles and strongly coupled gradient-like reaction-diffusion systems , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[16]  H. Kielhöfer Global solutions of semilinear evolution equations satisfying an energy inequality , 1980 .

[17]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .