Imaging heterogeneities with electrical impedance tomography: laboratory results

Electrical impedance tomography (EIT) is commonly used on site as a characterisation and monitoring tool. In the present work this technique has been applied at laboratory scale in order to investigate its capabilities in controlled conditions, with particular reference to the detection of anomalies in sandy samples. Various configurations have been studied, investigating heterogeneities due to variation of porosity, grain size distribution and clay content. The results show the great potential of EIT as an imaging tool in laboratory equipment to check sample homogeneity and to monitor processes during tests.

[1]  A. Alshawabkeh,et al.  Discussion and Closure: Electrokinetic Remediation. II: Theoretical Model , 1997 .

[2]  Luigi Sambuelli,et al.  FIRST EXPERIMENTS ON SOLID TRANSPORT ESTIMATION IN RIVER-FLOW BY FAST IMPEDANCE TOMOGRAPHY , 2002 .

[3]  Marko Vauhkonen,et al.  Electrical impedance tomography and prior information , 1997 .

[4]  James K. Mitchell,et al.  Fundamentals of soil behavior , 1976 .

[5]  Andrea Borsic,et al.  Generation of anisotropic-smoothness regularization filters for EIT , 2002, IEEE Transactions on Medical Imaging.

[6]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[7]  William R B Lionheart,et al.  A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project , 2002 .

[8]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[9]  Hans—Olaf Pfannkuch,et al.  On the Correlation of Electrical Conductivity Properties of Porous Systems with Viscous Flow Transport Coefficients , 1972 .

[10]  Shmulik P. Friedman,et al.  Theoretical Prediction of Electrical Conductivity in Saturated and Unsaturated Soil , 1991 .

[11]  Kevin Paulson,et al.  Electrode modelling in electrical impedance tomography , 1992 .

[12]  Lisa R. Blotz,et al.  ELECTRICAL RESISTIVITY OF COMPACTED CLAYS , 1996 .

[13]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[14]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[15]  Sia Nemat-Nasser,et al.  Radiographic and microscopic observation of shear bands in granular materials , 2001 .

[16]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[17]  R. Chambon,et al.  Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography , 1996 .

[18]  J. E. Chambers,et al.  The Use of 3D Electrical Resistivity Tomography to Characterise Waste and Leachate Distribution within a Closed Landfill, Thriplow, UK , 2002 .

[19]  Andrew Binley,et al.  The performance of electrical methods for assessing the integrity of geomembrane liners in landfill caps and waste storage ponds. , 2003 .

[20]  D. Djajaputra Electrical Impedance Tomography: Methods, History and Applications , 2005 .

[21]  William Robert Breckon Image reconstruction in electrical impedance tomography , 1990 .

[22]  Andrea Borsic,et al.  Regularisation methods for imaging from electrical measurements. , 2002 .

[23]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[24]  A. E. Bussian Electrical conductance in a porous medium , 1983 .

[25]  J Kaipio,et al.  Generalized optimal current patterns and electrical safety in EIT. , 2001, Physiological measurement.

[26]  John M. Reynolds,et al.  An Introduction to Applied and Environmental Geophysics , 1997 .

[27]  W J Tompkins,et al.  A regularised electrical impedance tomography reconstruction algorithm. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[28]  Cesare Comina,et al.  IMAGING HETEROGENEITIES AND DIFFUSION IN SAND SAMPLES , 2005 .

[29]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .