Species-specific polyamines from diatoms control silica morphology.

Biomineralizing organisms use organic molecules to generate species-specific mineral patterns. Here, we describe the chemical structure of long-chain polyamines (up to 20 repeated units), which represent the main organic constituent of diatom biosilica. These substances are the longest polyamine chains found in nature and induce rapid silica precipitation from a silicic acid solution. Each diatom is equipped with a species-specific set of polyamines and silica-precipitating proteins, which are termed silaffins. Different morphologies of precipitating silica can be generated by polyamines of different chain lengths as well as by a synergistic action of long-chain polyamines and silaffins.

[1]  M. Borowitzka,et al.  THE POLYMORPHIC DIATOM PHAEODACTYLUM TRICORNUTUM: ULTRASTRUCTURE OF ITS MORPHOTYPES 1, 2 , 1978 .

[2]  D. Dearborn,et al.  [50] Protein labeling by reductive alkylation , 1983 .

[3]  Benjamin E. Volcani,et al.  WALL MORPHOGENESIS IN COSCINODISCUS WAILESII GRAN AND ANGST. I. VALVE MORPHOLOGY AND DEVELOPMENT OF ITS ARCHITECTURE 1 , 1983 .

[4]  Stephen Mann,et al.  Synthesis of inorganic materials with complex form , 1996, Nature.

[5]  G. Ozin,et al.  Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons , 1995, Nature.

[6]  Stephen Mann,et al.  Molecular tectonics in biomineralization and biomimetic materials chemistry , 1993, Nature.

[7]  C. Brinker Sol-gel science , 1990 .

[8]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[9]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[10]  H. Lowenstam,et al.  Minerals formed by organisms. , 1981, Science.

[11]  B. Volcani,et al.  Aspects of Silicification in Wall Morphogenesis of Diatoms , 1984 .

[12]  R. Stratton,et al.  The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine , 1976 .

[13]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[14]  Richard Gordon,et al.  The chemical basis of diatom morphogenesis , 1994 .

[15]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[16]  B. Volcani,et al.  Silicon and Siliceous Structures in Biological Systems , 1981, Springer New York.

[17]  N. Kröger,et al.  Polycationic peptides from diatom biosilica that direct silica nanosphere formation. , 1999, Science.

[18]  J. G. Kirchner,et al.  Thin Layer Chromatography , 1963 .

[19]  H. Ogoshi,et al.  Silicic Acid Polymerization Catalyzed by Amines and Polyamines , 1998 .

[20]  R. Gordon,et al.  Beyond micromachining: the potential of diatoms. , 1999, Trends in biotechnology.