Application of Interval, Statistical, and Fuzzy Methods to the Evaluation of Measurements

In mathematics the uncertainties of numerical results can be represented by intervals, by dispersion characterisitcs, or by fuzzy numbers. By considering the measurement result not as a point but as a set, interval calculus may be introduced into the evaluation of measurements. With interval representation an analogy to the correlation of statistical data is to be considered. The use of statistical methods for the evaluation of measurements is justified if the state of statistical control is checked, usually by means of control charts. A pulse-density distribution within the interval is used for the combination of interval and statistical methods. Intervals can be transformed to fuzzy numbers which allow the uncertainty of uncertainty to be considered.

[1]  U. Stille Wahrscheinlicher Fehler und Fehlergrenze in Anwendung auf das Problem der Atomkonstanten , 1943 .

[2]  Leon Brillouin Mathematics, Physics, and Information (An Editorial) , 1957, Inf. Control..

[3]  Leon Brillouin,et al.  Inevitable Experimental Errors, Determinism, and Information Theory , 1959, Inf. Control..

[4]  Churchill Eisenhart,et al.  Realistic evaluation of the precision and accuracy of instrument calibration systems , 1963 .

[5]  P. Vigoureux,et al.  A Determination of the Ampere , 1965 .

[6]  M. Geppert,et al.  Renyi, A.: Wahrscheinlichkeitsrechnung mit einem Anhang über Informationstheorie. (Hochschulbücher für Mathematik, Bd. 54). 2. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1962. XI + 547 Seiten, 26 Abb. Preis M 55,‐ , 1968 .

[7]  C. H. Randall,et al.  Operational Statistics. I. Basic Concepts , 1972 .

[8]  D. J. Foulis,et al.  Operational statistics. II. Manuals of operations and their logics , 1973 .

[9]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[10]  E. R. Williams,et al.  New measurement of the proton gyromagnetic ratio and a derived value of the fine-structure constant accurate to a part in 10/sup 7/ , 1979 .

[11]  B P Kibble,et al.  A Measurement of the Gyromagnetic Ratio of the Proton in a Strong Magnetic Field , 1979 .

[12]  D. J. Harfiel Concerning the solution set ofAx=b whereP≦A≦Q andp≦b≦q , 1980 .

[13]  K. L. Hiebert,et al.  Solving Systems of Linear Equations and Inequalities , 1980 .

[14]  Scientific Uncertainty and Societal Decisions: The Challenge to the Analytical Chemist , 1980 .

[15]  G. R. Dolby The Role of Statistics in the Methodology of the Life Sciences , 1982 .

[16]  INFORMATION OBTAINED BY MEANS OF AN OBSERVATION PROCESS SUBJECT TO RANDOM FLUCTUATIONS , 1982 .

[17]  Marie A. Gaudard Convergence of posterior probabilities in the Bayesian inference strategy , 1985 .

[18]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[19]  Arnold Neumaier,et al.  Linear Interval Equations , 1986, Interval Mathematics.

[20]  R. G. Jones,et al.  Realization of the SI Ohm at NPL , 1985, IEEE Transactions on Instrumentation and Measurement.

[21]  Yair Censor,et al.  An automatic relaxation method for solving interval linear inequalities , 1985 .

[22]  D. W. Allan,et al.  Should the classical variance be used as a basic measure in standards metrology? , 1987, IEEE Transactions on Instrumentation and Measurement.