PCA Meets RG

[1]  Jean-Philippe Bouchaud,et al.  Cleaning large correlation matrices: tools from random matrix theory , 2016, 1610.08104.

[2]  Michael J. Berry,et al.  Thermodynamics and signatures of criticality in a network of neurons , 2015, Proceedings of the National Academy of Sciences.

[3]  Jean-Philippe Bouchaud,et al.  Rotational Invariant Estimator for General Noisy Matrices , 2015, IEEE Transactions on Information Theory.

[4]  D. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[5]  Maria Chiara Angelini,et al.  Spin glass in a field: a new zero-temperature fixed point in finite dimensions. , 2014, Physical review letters.

[6]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[7]  L. Kadanoff Innovations in Statistical Physics , 2014, 1403.6464.

[8]  L. Kadanoff Reflections on Gibbs: From Statistical Physics to the Amistad V3.0 , 2014, 1403.2460.

[9]  Michael J. Berry,et al.  Searching for Collective Behavior in a Large Network of Sensory Neurons , 2013, PLoS Comput. Biol..

[10]  J. Sethna,et al.  Parameter Space Compression Underlies Emergent Theories and Predictive Models , 2013, Science.

[11]  Maria Chiara Angelini,et al.  Ensemble renormalization group for disordered systems , 2011, 1111.6869.

[12]  Eser Aygün,et al.  Spectral renormalization group theory on networks , 2011, 1107.3457.

[13]  M. Castellana,et al.  Real-space Renormalization Group analysis of a non-mean-field spin-glass , 2011, 1105.4955.

[14]  L. Kadanoff Relating Theories via Renormalization , 2011, 1102.3705.

[15]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[16]  Mark K Transtrum,et al.  Geometry of nonlinear least squares with applications to sloppy models and optimization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Leo P. Kadanoff,et al.  More is the Same; Phase Transitions and Mean Field Theories , 2009, 0906.0653.

[18]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[19]  K. S. Brown,et al.  Sloppy-model universality class and the Vandermonde matrix. , 2006, Physical review letters.

[20]  K. H. Lee,et al.  The statistical mechanics of complex signaling networks: nerve growth factor signaling , 2004, Physical biology.

[21]  M. Marsili Dissecting financial markets: sectors and states , 2002, cond-mat/0207156.

[22]  Lindsay I. Smith,et al.  A tutorial on Principal Components Analysis , 2002 .

[23]  R. Mantegna,et al.  Variety and volatility in financial markets , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  S. Nagel,et al.  Noise stabilization of self-organized memories. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  L. Kadanoff,et al.  Analysis of a Population Genetics Model with Mutation, Selection, and Pleiotropy , 1998, cond-mat/9809143.

[26]  Andrea L. Bertozzi,et al.  Singularities and similarities in interface flows , 1994 .

[27]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[28]  L. Kadanoff,et al.  Singularities in complex interfaces , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[29]  P. Howe,et al.  Multicritical points in two dimensions, the renormalization group and the ϵ expansion , 1989 .

[30]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[31]  Chao Tang,et al.  Viscous flows in two dimensions , 1986 .

[32]  I. Procaccia,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets [Phys. Rev. A 33, 1141 (1986)] , 1986 .

[33]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[34]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Kurt Binder,et al.  Finite size scaling analysis of ising model block distribution functions , 1981 .

[36]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[37]  G. Jona-Lasinio The renormalization group: A probabilistic view , 1975 .

[38]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[39]  Leo P. Kadanoff,et al.  Public Policy Conclusions from Urban Growth Models , 1972, IEEE Trans. Syst. Man Cybern..

[40]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[41]  L. Kadanoff From simulation model to public policy , 1971 .

[42]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[43]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .