Large dimensional random k circulants

Consider random k-circulants A_{k,n} with n tends to infinity, k=k(n) and whose input sequence \{a_l\}_{l \ge 0} is independent with mean zero and variance one and \sup_n n^{-1}\sum_{l=1}^n \E |a_l|^{2+\delta} 0. Under suitable restrictions on the sequence \{k(n)\}_{n \ge 1}, we show that the limiting spectral distribution (LSD) of the empirical distribution of suitably scaled eigenvalues exists and identify the limits. In particular, we prove the following: Suppose g \ge 1 is fixed and p_1 is the smallest prime divisor of g. Suppose P_g=\prod_{j=1}^g E_j where \{E_j\}_{1 \le j \le g} are i.i.d. exponential random variables with mean one. (i) If k^g = -1+ s n where s=1 if g=1 and s = o(n^{p_1 -1}) if g>1, then the empirical spectral distribution of n^{-1/2}A_{k,n} converges weakly in probability to U_1P_g^{1/2g} where U_1 is uniformly distributed over the (2g)th roots of unity, independent of P_g. (ii) If g \ge 2 and k^g = 1+ s n with s = o(n^{p_1-1}) then the empirical spectral distribution of n^{-1/2}A_{k,n} converges weakly in probability to U_2P_g^{1/2g} where U_2 is uniformly distributed over the unit circle in \mathbb R^2, independent of P_g. On the other hand, if k \ge 2, k= n^{o(1)} with \gcd(n,k) = 1, and the input is i.i.d. standard normal variables, then F_{n^{-1/2}A_{k,n}} converges weakly in probability to the uniform distribution over the circle with center at (0,0) and radius r = \exp(\E [ \log \sqrt E_1]). We also show that when n=k^2+1\to \infty, and the input is i.i.d. with finite (2+\delta) moment, then the spectral radius, with appropriate scaling and centering, converges to the Gumbel distribution.

[1]  Arup Bose,et al.  Limiting spectral distributions of some band matrices , 2011, Period. Math. Hung..

[2]  Arup Bose,et al.  Limiting spectral distribution of XX' matrices , 2010 .

[3]  V. Kargin Spectrum of random Toeplitz matrices with band structure , 2009 .

[4]  Dang-Zheng Liu,et al.  Limit Distributions for Random Hankel, Toeplitz Matrices and Independent Products , 2009 .

[5]  Arup Bose,et al.  Another look at the moment method for large dimensional random matrices , 2008 .

[6]  S. Georgiou,et al.  Multi-level k-circulant Supersaturated Designs , 2006 .

[7]  Steven J. Miller,et al.  Distribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices , 2005, math/0512146.

[8]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[9]  Steven J. Miller,et al.  Distribution of Eigenvalues for the Ensemble of Real Symmetric Toeplitz Matrices , 2005 .

[10]  N. Wermuth,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2005 .

[11]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[12]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[13]  Arup Bose,et al.  Limiting spectral distribution of a special circulant , 2002 .

[14]  Yaokun Wu,et al.  g-Circulant solutions to the (0,1) matrix equation Am=Jn☆ , 2002 .

[15]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[16]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[17]  D. Pollock,et al.  Circulant matrices and time-series analysis , 2000 .

[18]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[19]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[20]  C. Tracy,et al.  The Distribution of the Largest Eigenvalue in the Gaussian Ensembles: β = 1, 2, 4 , 1997, solv-int/9707001.

[21]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[22]  V. V. Strok Circulant matrices and the spectra of de Bruijn graphs , 1992 .

[23]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[24]  R. Rao,et al.  Normal Approximation and Asymptotic Expansions , 1976 .

[25]  G. Terrell Applied Probability , 1969, Journal of Applied Probability.

[26]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[27]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[28]  W. Bryc,et al.  A remark on the maximum eigenvalue for circulant matrices , 2009 .

[29]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[30]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[31]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[32]  Richard A. Davis,et al.  The Maximum of the Periodogram of a Non-Gaussian Sequence , 1999 .