Parts-based segmentation with overlapping part models using Markov chain Monte Carlo

A probabilistic method is proposed for segmenting multiple objects that overlap or are in close proximity to one another. A likelihood function is formulated that explicitly models overlapping object appearance. Priors on global appearance and geometry (including shape) are learned from example images. Markov chain Monte Carlo methods are used to obtain samples from a posterior distribution over model parameters from which expectations can be estimated. The method is described in detail for the problem of segmenting femur and tibia in X-ray images. The result is a probabilistic segmentation that quantifies uncertainty, conditioned upon the model, so that measurements such as joint space can be made with associated uncertainty.

[1]  Hildur Ólafsdóttir,et al.  Adding Curvature to Minimum Description Length Shape Models , 2003, BMVC.

[2]  Milan Sonka,et al.  Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples , 2000, IEEE Transactions on Medical Imaging.

[3]  John MacCormick Stochastic algorithms for visual tracking: probabilistic modelling and stochastic algorithms for visual localisation and tracking , 2000 .

[4]  F. Lad,et al.  Approximating the Distribution for Sums of Products of Normal Variables , 2003 .

[5]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[6]  Y. Sun,et al.  Reliability of radiographic assessment in hip and knee osteoarthritis. , 1999, Osteoarthritis and cartilage.

[7]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[8]  Harry Shum,et al.  Hierarchical Shape Modeling for Automatic Face Localization , 2002, ECCV.

[9]  S. Nayar,et al.  Early Visual Learning , 1996 .

[10]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[11]  J. Kellgren,et al.  Radiological Assessment of Osteo-Arthrosis , 1957, Annals of the rheumatic diseases.

[12]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Timothy F. Cootes,et al.  A Minimum Description Length Approach to Statistical Shape Modelling , 2001 .

[14]  M Lequesne,et al.  Atlas of individual radiographic features in osteoarthritis. , 1995, Osteoarthritis and cartilage.

[15]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[16]  Christopher H. Holloman,et al.  Multi-resolution Genetic Algorithms and Markov Chain Monte Carlo , 2002 .

[17]  Herbert K. H. Lee,et al.  Multiresolution Genetic Algorithms and Markov chain Monte Carlo , 2006 .

[18]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[19]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[20]  L. Goddard Information Theory , 1962, Nature.

[21]  J C Buckland-Wright,et al.  Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. , 1995, Annals of the rheumatic diseases.

[22]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[23]  Kanti V. Mardia,et al.  Deformable Template Recognition of Multiple Occluded Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Stan Z. Li Recognizing multiple overlapping objects in image: an optimal formulation , 2000, IEEE Trans. Image Process..

[25]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[26]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[27]  P P Smyth,et al.  Vertebral shape: automatic measurement with active shape models. , 1999, Radiology.

[28]  Håvard Rue,et al.  Identification of partly destroyed objects using deformable templates , 1998, Stat. Comput..

[29]  P A Dieppe,et al.  Knee pain and disability in the community. , 1992, British journal of rheumatology.

[30]  M. Doherty,et al.  Development of a logically devised line drawing atlas for grading of knee osteoarthritis , 2000, Annals of the rheumatic diseases.

[31]  Michael I. Jordan Graphical Models , 2003 .

[32]  Stephen J. McKenna,et al.  Learning Active Shape Models for Bifurcating Contours , 2007, IEEE Transactions on Medical Imaging.

[33]  Chris A. Glasbey Ultrasound Image Segmentation using Stochastic Templates , 1998 .

[34]  Stephen P. Brooks,et al.  Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .

[35]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[36]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[37]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[38]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .