SAR image despeckling using possibilistic fuzzy C-means clustering and edge detection in bandelet domain

This paper aims at edge preservation and despeckling of synthetic aperture radar (SAR) images using a novel algorithm comprising edge detection and possibilistic fuzzy C-means clustering (PFCM) in the translation-invariant second-generation bandelet transform (TIBT) domain. The edges from the SAR image are first removed using a canny operator, and TIBT and PFCM clustering are employed to decompose and despeckle the edge-removed image, respectively. The edges are then added to the reconstructed image to obtain an enhanced version of the despeckled image. The quality of the image outperforms other despeckling methods such as K-means and fuzzy C-means that do not use edge preservation techniques. Thus, the proposed algorithm effectively realizes both despeckling and edge preservation techniques.

[1]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[2]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[3]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[4]  Stéphane Mallat,et al.  Discrete bandelets with geometric orthogonal filters , 2005, IEEE International Conference on Image Processing 2005.

[5]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[6]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[7]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[8]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[9]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[10]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[11]  Jong-Sen Lee Speckle suppression and analysis for synthetic aperture radar images , 1986 .

[12]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[13]  Quan Pan,et al.  Two denoising methods by wavelet transform , 1999, IEEE Trans. Signal Process..

[14]  Stéphane Mallat,et al.  A review of Bandlet methods for geometrical image representation , 2007, Numerical Algorithms.

[15]  Bin Liu,et al.  Noise Reduction in Interferograms Using the Wavelet Packet Transform and Wiener Filtering , 2008, IEEE Geoscience and Remote Sensing Letters.

[16]  W. G. Zhang,et al.  Edge detection with multiscale products for SAR image despeckling , 2012 .

[17]  Mahmod Reza Sahebi,et al.  Windowed Fourier Transform for Noise Reduction of SAR Interferograms , 2009, IEEE Geoscience and Remote Sensing Letters.

[18]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Fang Liu,et al.  SAR Image Despeckling Using Edge Detection and Feature Clustering in Bandelet Domain , 2010, IEEE Geoscience and Remote Sensing Letters.

[20]  S Md. Mansoor Roomi Despeckling of SAR Images by Optimizing Averaged Power Spectral Value in Curvelet Domain , 2012 .

[21]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[23]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[24]  Jong-Sen Lee,et al.  Speckle Suppression and Analysis for Synthetic Aperture Radar Images , 1985, Optics & Photonics.

[25]  Ali Shamsoddini,et al.  IMAGE TEXTURE PRESERVATION IN SPECKLE NOISE SUPPRESSION , 2010 .

[26]  Alexander A. Sawchuk,et al.  Adaptive Restoration Of Images With Speckle , 1983, Optics & Photonics.

[27]  D. Kalaiyarasi DESPECKLING OF SAR IMAGES BY OPTIMIZING AVERAGED POWER SPECTRAL VALUE IN CURVELET DOMAIN , 2012 .

[28]  Ying Li,et al.  An Adaptive Method of Speckle Reduction and Feature Enhancement for SAR Images Based on Curvelet Transform and Particle Swarm Optimization , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Xinbo Gao,et al.  Advances in theory and applications of fuzzy clustering , 2000 .