Sensing and imaging using laser feedback interferometry with quantum cascade lasers

Quantum cascade lasers (QCLs) are high-power sources of coherent radiation in the midinfrared and terahertz (THz) bands. Laser feedback interferometry (LFI) is one of the simplest coherent techniques, for which the emission source can also play the role of a highly-sensitive detector. The combination of QCLs and LFI is particularly attractive for sensing applications, notably in the THz band where it provides a high-speed high-sensitivity detection mechanism which inherently suppresses unwanted background radiation. LFI with QCLs has been demonstrated for a wide range of applications, including the measurement of internal laser characteristics, trace gas detection, materials analysis, biomedical imaging, and near-field imaging. This article provides an overview of QCLs and the LFI technique, and reviews the state of the art in LFI with sensing using QCLs.

[1]  J. Aizpurua,et al.  Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. , 2008, Nano letters.

[2]  J. Xi,et al.  Influence of external optical feedback on the alpha factor of semiconductor lasers. , 2013, Optics letters.

[3]  E. Linfield,et al.  Infinite-Period Density-Matrix Model for Terahertz-Frequency Quantum Cascade Lasers , 2017, IEEE Transactions on Terahertz Science and Technology.

[4]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[5]  Xiaoji G. Xu,et al.  Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling , 2016, Nature Communications.

[6]  H. Hübers,et al.  Terahertz gas spectroscopy through self-mixing in a quantum-cascade laser , 2016 .

[7]  Edmund Linfield,et al.  Coherent terahertz photonics. , 2013, Optics express.

[8]  Benjamin S. Williams,et al.  Origins of Terahertz Difference Frequency Susceptibility in Midinfrared Quantum Cascade Lasers , 2016 .

[9]  T. Leisner,et al.  Optical feedback cavity enhanced absorption spectroscopy: effective adjustment of the feedback-phase , 2012 .

[10]  A. Davies,et al.  Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser. , 2018, Optics letters.

[11]  C. Sirtori,et al.  Dynamic Modeling of Terahertz Quantum Cascade Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[13]  E. Hack,et al.  Terahertz holography for imaging amplitude and phase objects. , 2014, Optics express.

[14]  Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler , 2009 .

[15]  Daniel M Mittleman,et al.  Twenty years of terahertz imaging [Invited]. , 2018, Optics express.

[16]  E. Pickwell‐MacPherson,et al.  Tissue characterization using terahertz pulsed imaging in reflection geometry , 2009, Physics in medicine and biology.

[17]  M. Carras,et al.  Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. , 2010, Optics letters.

[18]  D. Indjin,et al.  Quantum transport in semiconductor quantum dot superlattices: Electron-phonon resonances and polaron effects , 2007, 0708.1134.

[19]  Gail Purvis MWIR centre field in R&D , 2006 .

[20]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[21]  Francesco P. Mezzapesa,et al.  Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers , 2015, Scientific Reports.

[22]  S. Schilt,et al.  Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature. , 2012, Optics express.

[23]  Quantum cascade laser intensity noise under external feedback conditions estimated from self-mixing method , 2013 .

[24]  J. Röpcke,et al.  Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy. , 2016, Optics express.

[25]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[26]  T. Taimre,et al.  Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing , 2015 .

[27]  Kathirvel Nallappan,et al.  Toward real-time terahertz imaging , 2018, Advances in Optics and Photonics.

[28]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[29]  H. Beere,et al.  Research data supporting "Fast terahertz imaging using a quantum cascade amplifier" , 2015 .

[30]  Edmund H. Linfield,et al.  Terahertz radar cross-section characterisation using laser feedback interferometry with quantum cascade laser , 2015 .

[31]  Thomas Taimre,et al.  Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers. , 2019, Optics express.

[32]  A. Davies,et al.  Gas spectroscopy through multimode self-mixing in a double-metal terahertz quantum cascade laser. , 2018, Optics letters.

[33]  M Brambilla,et al.  QCL-based nonlinear sensing of independent targets dynamics. , 2014, Optics express.

[34]  J. Lü,et al.  Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers , 2008 .

[35]  A. Wacker,et al.  Nonequilibrium Green’s Function Model for Simulation of Quantum Cascade Laser Devices Under Operating Conditions , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  G. Giuliani,et al.  Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect , 2004, IEEE Photonics Technology Letters.

[37]  Edmund H. Linfield,et al.  Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers , 2011 .

[38]  G. Ritchie,et al.  Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity: model and experiments , 2015 .

[39]  Guido Giuliani,et al.  Measurements of the alpha factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. , 2006, Optics letters.

[40]  M Brambilla,et al.  Intrinsic stability of quantum cascade lasers against optical feedback. , 2013, Optics express.

[41]  Yah Leng Lim,et al.  Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[42]  E. Linfield,et al.  Multi-spectral terahertz sensing: proposal for a coupled-cavity quantum cascade laser based optical feedback interferometer. , 2017, Optics express.

[43]  Mathieu Carras,et al.  Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers , 2014 .

[44]  Edmund H. Linfield,et al.  Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations , 2015 .

[45]  S. Borri,et al.  Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. , 2009, Physical review letters.

[46]  Massimo Inguscio,et al.  Quantum-limited frequency fluctuations in a terahertz laser , 2012, Nature Photonics.

[47]  Daan Lenstra,et al.  The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers , 1984 .

[48]  Yah Leng Lim,et al.  Terahertz imaging through self-mixing in a quantum cascade laser. , 2011, Optics letters.

[49]  Hanspeter Helm,et al.  Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. , 2009, Optics express.

[50]  F. Capasso,et al.  New frontiers in quantum cascade lasers: high performance room temperature terahertz sources , 2015 .

[51]  M. Phillips,et al.  Intracavity sensing via compliance voltage in an external cavity quantum cascade laser. , 2012, Optics letters.

[52]  R. Braakman,et al.  Principles and promise of Fabry–Perot resonators at terahertz frequencies , 2011 .

[53]  A. Davies,et al.  Origin of terminal voltage variations due to self-mixing in terahertz frequency quantum cascade lasers. , 2016, Optics express.

[54]  Erik E. Josberger,et al.  Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. , 2013, Optics express.

[55]  Luca Ciaffoni,et al.  ICL-Based OF-CEAS: A Sensitive Tool for Analytical Chemistry. , 2017, Analytical chemistry.

[56]  B. Williams,et al.  High-power terahertz quantum cascade lasers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[57]  Aurèle J. L. Adam,et al.  Review of Near-Field Terahertz Measurement Methods and Their Applications , 2011 .

[58]  S. Donati,et al.  Responsivity and Noise of Self-Mixing Photodetection Schemes , 2011, IEEE Journal of Quantum Electronics.

[59]  S. Reuter,et al.  Detection of HO2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy , 2016 .

[60]  Francesco P. Mezzapesa,et al.  Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers , 2014 .

[61]  L. Sorba,et al.  Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution , 2014 .

[62]  Paul Harrison,et al.  Density matrix theory of transport and gain in quantum cascade lasers in a magnetic field , 2007, cond-mat/0702508.

[63]  D. Romanini,et al.  Optical feedback stabilized laser tuned by single-sideband modulation. , 2013, Optics letters.

[64]  Jean-Luc Thobel,et al.  Dynamic modeling of a midinfrared quantum cascade laser , 2009 .

[65]  Edmund H. Linfield,et al.  Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser , 2016 .

[66]  H Amrania,et al.  New IR imaging modalities for cancer detection and for intra-cell chemical mapping with a sub-diffraction mid-IR s-SNOM. , 2016, Faraday discussions.

[67]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[68]  Riccardo Cicchi,et al.  Real-time terahertz digital holography with a quantum cascade laser , 2015, Scientific Reports.

[69]  Gaetano Scamarcio,et al.  Phase-resolved terahertz self-detection near-field microscopy. , 2018, Optics express.

[70]  D. Romanini,et al.  Accurate laboratory determination of the near‐infrared water vapor self‐continuum: A test of the MT_CKD model , 2016 .

[71]  T. Taimre,et al.  Frequency Tuning Range Control in Pulsed Terahertz Quantum-Cascade Lasers: Applications in Interferometry , 2018, IEEE Journal of Quantum Electronics.

[72]  H. Hübers,et al.  Doppler-free spectroscopy with a terahertz quantum-cascade laser. , 2018, Optics express.

[73]  G. Scamarcio,et al.  Continuous-Wave Reflection Imaging Using Optical Feedback Interferometry in Terahertz and Mid-Infrared Quantum Cascade Lasers , 2014, IEEE Transactions on Terahertz Science and Technology.

[74]  Seungyong Jung,et al.  Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation , 2017, Science Advances.

[75]  Oliver G Schmidt,et al.  Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy. , 2012, Nano letters.

[76]  Andrew D. Burnett,et al.  Laser Feedback Interferometry as a Tool for Analysis of Granular Materials at Terahertz Frequencies: Towards Imaging and Identification of Plastic Explosives , 2016, Sensors.

[77]  Govind P. Agrawal,et al.  Line narrowing in a single-mode injection laser due to external optical feedback , 1984 .

[78]  A. Wacker,et al.  Simulating terahertz quantum cascade lasers: Trends from samples from different labs , 2016, 1607.02374.

[79]  Luigi Consolino,et al.  Bow-Tie Cavity for Terahertz Radiation , 2018, Photonics.

[80]  Yah Leng Lim,et al.  Self-Mixing Interferometry With Terahertz Quantum Cascade Lasers , 2013, IEEE Sensors Journal.

[81]  M. Beck,et al.  Far-infrared quantum cascade lasers operating in AlAs phonon Reststrahlen band , 2016, 1609.08196.

[82]  Spectral Behavior of Linewidth Enhancement Factor of a Mid-Infrared Quantum Cascade Laser , 2008 .

[83]  R C Iotti,et al.  Nature of charge transport in quantum-cascade lasers. , 2001, Physical review letters.

[84]  H. Hübers,et al.  Heterodyne Spectroscopy of Frequency Instabilities in Terahertz Quantum-Cascade Lasers Induced by Optical Feedback , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[85]  Seungyong Jung,et al.  Recent progress in terahertz difference-frequency quantum cascade laser sources , 2018, Nanophotonics.

[86]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[87]  P. Taday,et al.  Terahertz Pulsed Spectroscopy of Human Basal Cell Carcinoma , 2006, Applied spectroscopy.

[88]  Guido Giuliani,et al.  Measurement of linewidth enhancement factor of different semiconductor lasers in operating conditions , 2006, SPIE Photonics Europe.

[89]  M. Norgia,et al.  Laser diode linewidth measurement by means of self-mixing interferometry , 2000, IEEE Photonics Technology Letters.

[90]  Mark C. Phillips,et al.  Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals , 2015, SPIE OPTO.

[91]  H. Hübers,et al.  Real-time terahertz imaging through self-mixing in a quantum-cascade laser , 2016 .

[92]  R. Sullivan Radar Foundations for Imaging and Advanced Concepts , 2004 .

[93]  Daniele Romanini,et al.  Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared , 2017 .

[94]  Thomas Taimre,et al.  Simple Electrical Modulation Scheme for Laser Feedback Imaging , 2016, IEEE Sensors Journal.

[95]  Guido Giuliani,et al.  Linewidth enhancement factor of terahertz quantum cascade lasers , 2008 .

[96]  Giuseppe de Risi,et al.  Study of QCL Laser Sources for the Realization of Advanced Sensors , 2015, Sensors.

[97]  Shuting Fan,et al.  The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. , 2012, Quantitative imaging in medicine and surgery.

[98]  Guozhen Liang,et al.  Recent Developments of Terahertz Quantum Cascade Lasers , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[99]  T Taimre,et al.  Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry with a quantum cascade laser. , 2014, Optics letters.

[100]  Lucia Sorba,et al.  Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging , 2017, Scientific Reports.

[101]  C. Jirauschek,et al.  Modeling techniques for quantum cascade lasers , 2014, 1412.3563.

[102]  David A. Ritchie,et al.  Terahertz Nanoscopy of Plasmonic Resonances with a Quantum Cascade Laser , 2017 .

[103]  Edmund H. Linfield,et al.  Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis. , 2013, Optics express.

[104]  G. Scalari,et al.  Quantum cascade lasers: 20 years of challenges. , 2015, Optics express.

[105]  A. Grier Modelling the optical and electronic transport properties of AlGaAs and AlGaN intersubband devices and optimisation of quantum cascade laser active regions , 2015 .

[106]  Daniele Romanini,et al.  Cavity Enhanced Absorption Spectroscopy with Optical Feedback , 2014 .

[107]  Andrew D. Burnett,et al.  Terahertz imaging using quantum cascade lasers—a review of systems and applications , 2014 .

[108]  Carlo Sirtori,et al.  Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling , 2013, 1304.3207.

[109]  Real-time gas sensing based on optical feedback in a terahertz quantum-cascade laser. , 2017, Optics express.

[110]  Chi On Chui,et al.  Density matrix modeling of quantum cascade lasers without an artificially localized basis: A generalized scattering approach , 2017, 1705.03072.

[111]  Guido Giuliani,et al.  Laser diode self-mixing technique for sensing applications , 2002 .

[112]  Francesco P. Mezzapesa,et al.  Detection of ultrafast laser ablation using quantum cascade laser-based sensing , 2012 .

[113]  Thomas Taimre,et al.  Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry , 2017, Scientific Reports.

[114]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[115]  P. M. Lugarà,et al.  On Line Sensing of Ultrafast Laser Microdrilling Processes by Optical Feedback Interferometry , 2013 .

[116]  Design and simulation of terahertz quantum cascade lasers , 2001, cond-mat/0110144.

[117]  Edmund H. Linfield,et al.  Determining Ethanol Content of Liquid Solutions Using Laser Feedback Interferometry with a Terahertz Quantum Cascade Laser , 2018, IEEE Sensors Letters.

[118]  A. Davies,et al.  Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser. , 2015, Optics letters.

[119]  Thomas Taimre,et al.  On the nature of Acket's characteristic parameter C in semiconductor lasers. , 2014, Applied optics.

[120]  Thomas Taimre,et al.  Model for a pulsed terahertz quantum cascade laser under optical feedback. , 2016, Optics express.

[121]  K. Kasahara,et al.  Detuning characteristics of the linewidth enhancement factor of a mid-infrared quantum cascade laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[122]  S. Borri,et al.  Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. , 2011, Optics express.

[123]  V. Wallace,et al.  Biomedical applications of terahertz technology , 2006 .

[124]  M. Carras,et al.  Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit , 2013, Applied Physics B.

[125]  Sadao Adachi,et al.  Optical Properties of Crystalline and Amorphous Semiconductors , 1999 .

[126]  M. Vitiello,et al.  High-Q resonant cavities for terahertz quantum cascade lasers. , 2015, Optics express.

[127]  Edmund H. Linfield,et al.  Multi-Watt high-power THz frequency quantum cascade lasers , 2017 .

[128]  Edmund H. Linfield,et al.  Coherent three-dimensional terahertz imaging through self-mixing in a quantum cascade laser , 2013 .

[129]  M. Brandstetter,et al.  Evaluation of Material Systems for THz Quantum Cascade Laser Active Regions , 2018, physica status solidi (a).

[130]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[131]  Design and Simulation of THz Quantum Cascade Lasers , 2021 .

[132]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[133]  Francesco P. Mezzapesa,et al.  Nanoscale Displacement Sensing Based on Nonlinear Frequency Mixing in Quantum Cascade Lasers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[134]  S. Mikhailenko,et al.  The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database , 2017 .

[135]  Paul Harrison,et al.  Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers , 2003 .

[136]  Julien Perchoux,et al.  Solving self-mixing equations for arbitrary feedback levels: a concise algorithm. , 2014, Applied optics.

[137]  Thomas Taimre,et al.  High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry. , 2014, Biomedical optics express.

[138]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[139]  Francesco P. Mezzapesa,et al.  Linewidth measurement of mid infrared quantum cascade laser by optical feedback interferometry , 2016 .

[140]  P. Borowik,et al.  Monte Carlo modeling applied to studies of quantum cascade lasers , 2017 .

[141]  Silvano Donati,et al.  Laser interferometry by induced modulation of cavity field , 1978 .

[142]  R. Horng,et al.  The Diagram of Feedback Regimes Revisited , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[143]  D. Weidmann,et al.  Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. , 2013, Optics letters.

[144]  M. Vitiello,et al.  Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range , 2013 .

[145]  Julien Perchoux,et al.  Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer. , 2015, Applied optics.

[146]  S. Donati Developing self‐mixing interferometry for instrumentation and measurements , 2012 .