A DIFFUSE ELEMENT‐FINITE ELEMENT TECHNIQUE FOR TRANSIENT COUPLED ANALYSIS

[1]  Ted Belytschko,et al.  A variationally coupled FE–BE method for transient problems , 1994 .

[2]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[3]  Pieter A. Vermeer,et al.  An accuracy condition for consolidation by finite elements , 1981 .

[4]  M. Pastor,et al.  Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[6]  O. C. Zienkiewicz,et al.  Incompressibility without tears—HOW to avoid restrictions of mixed formulation , 1991 .

[7]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[8]  J. Mandel Consolidation Des Sols (Étude Mathématique) , 1953 .

[9]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[10]  T. Belytschko,et al.  Finite element derivative recovery by moving least square interpolants , 1994 .

[11]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[12]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[13]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[14]  E. Oñate,et al.  Finite volumes and finite elements: Two ‘good friends’ , 1994 .