A DIFFUSE ELEMENT‐FINITE ELEMENT TECHNIQUE FOR TRANSIENT COUPLED ANALYSIS
暂无分享,去创建一个
[1] Ted Belytschko,et al. A variationally coupled FE–BE method for transient problems , 1994 .
[2] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[3] Pieter A. Vermeer,et al. An accuracy condition for consolidation by finite elements , 1981 .
[4] M. Pastor,et al. Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[5] J. C. Simo,et al. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .
[6] O. C. Zienkiewicz,et al. Incompressibility without tears—HOW to avoid restrictions of mixed formulation , 1991 .
[7] P. Lancaster,et al. Surfaces generated by moving least squares methods , 1981 .
[8] J. Mandel. Consolidation Des Sols (Étude Mathématique) , 1953 .
[9] B. Nayroles,et al. Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .
[10] T. Belytschko,et al. Finite element derivative recovery by moving least square interpolants , 1994 .
[11] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[12] T. Hughes. Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .
[13] T. Belytschko,et al. A new implementation of the element free Galerkin method , 1994 .
[14] E. Oñate,et al. Finite volumes and finite elements: Two ‘good friends’ , 1994 .