Vapor–Liquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water

Ionic liquids have the potential to be used for extracting valuable chemicals from raw materials. These processes often involve water, and after extraction, the water or other chemicals must be rem...

[1]  G. W. Bennett A laboratory experiment on the boiling-point curves of non-azeotropic binary mixtures , 1929 .

[2]  D. Keyes Liquid-Vapor Composition Curves of Acetic Acid and Water at Subatmospheric Pressures , 1933 .

[3]  R. York,et al.  Vapor-Liquid Equilibria of the System Acetone–Acetic Acid–Water , 1942 .

[4]  D. Othmer,et al.  Composition of Vapors from Boiling Binary Solutions , 1945 .

[5]  I. Brown,et al.  Liquid-Vapour Equilibria. I. The Systems Carbon Tetrachloride-cyclo-hexane and Water-Acetic Acid , 1950 .

[6]  V. Orr Vapor-Liquid Equilibrium of Non-Ideal Solutions. , 1950 .

[7]  D. Othmer,et al.  Composition of Vapors from Boiling Binary Solutions: Pressure Equilibrium Still for Studying Water–Acetic Acid System , 1952 .

[8]  L. Garwin,et al.  Dimethylaniline as an Aid in Acetic Acid–Water Separation , 1953 .

[9]  J. Marek,et al.  Vapor-liquid equilibria in mixtures containing an associating substance. II. Binary mixtures of acetic acid at atmospheric pressure , 1955 .

[10]  G. M. Wilson,et al.  Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing , 1964 .

[11]  Stephen Yerazunis,et al.  Vapor-liquid equilibrium determination by a new apparatus , 1964 .

[12]  W. R. Kelly,et al.  Densities and Viscosities of Potassium Hydroxide Solutions at Low Temperatures. , 1965 .

[13]  J. Prausnitz,et al.  LOCAL COMPOSITIONS IN THERMODYNAMIC EXCESS FUNCTIONS FOR LIQUID MIXTURES , 1968 .

[14]  M. Broul,et al.  Liquid-vapour equilibrium in systems of electrolytic components. V. The system CH 3 OH-H 2 O-LiCl at 60 °C , 1969 .

[15]  J. Prausnitz,et al.  Estimation of Parameters for the NRTL Equation for Excess Gibbs Energies of Strongly Nonideal Liquid Mixtures , 1969 .

[16]  W. Hamer,et al.  Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C , 1972 .

[17]  H. Gibbard,et al.  Liquid-vapor equilibrium of aqueous lithium chloride, from 25 to 100.deg. and from 1.0 to 18.5 molal, and related properties , 1973 .

[18]  Robert F. Platford,et al.  Osmotic coefficients of aqueous solutions of seven compounds at 0.deg. , 1973 .

[19]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[20]  E. Sada,et al.  SALT EFFECTS ON VAPOR-LIQUID EQUILIBRIUM OF ISOPROPANOL-WATER SYSTEM , 1975 .

[21]  W. F. Furter,et al.  Elevation of the Boiling Point of Water by Salts at Saturation: Data and Correlation, , 1977 .

[22]  J. Prausnitz,et al.  On the derivation and extension of the uniquac equation , 1978 .

[23]  E. Plattner,et al.  Vapor-liquid equilibriums of the sodium chloride-water system in the temperature range 300-440 .degree.C , 1981 .

[24]  Herbert I. Britt,et al.  Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems , 1982 .

[25]  A. N. Campbell,et al.  Osmotic and activity coefficients of sodium hydroxide in water from 150 to 250.degree.C , 1984 .

[26]  Kenneth S. Pitzer,et al.  Thermodynamic Properties of Aqueous Sodium Chloride Solutions , 1984 .

[27]  E. Clarke,et al.  Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C , 1985 .

[28]  A. D. Pethybridge,et al.  Densities of aqueous lithium, sodium and potassium hydroxides from 25 to 75.degree. C at 1 atm , 1986 .

[29]  A. Apelblat,et al.  Excess molar volumes of formic acid + water acetic acid + water and propionic acid + water systems at 288.15, 298.15 and 308.15 K , 1987 .

[30]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[31]  D. G. Archer,et al.  The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes , 1990 .

[32]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[33]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[34]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures , 1991 .

[35]  Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. [Erratum to document cited in CA115(8):79950j] , 1993 .

[36]  A. Klamt Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .

[37]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[38]  Eli Korin,et al.  The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 227 K to 323 K , 1998 .

[39]  R. Mesmer,et al.  Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures , 1998 .

[40]  Liang-Sun Lee,et al.  Vapor pressures and enthalpies of vaporization of aqueous solutions of benzyltrimethylammonium chloride, benzyltriethylammonium chloride, and benzltributylammonium chloride , 1998 .

[41]  Liang-Sun Lee,et al.  Vapor Pressures and Enthalpies of Vaporization of Aqueous Solutions of Triethylammonium Chloride, 2-Hydroxyethylammonium Chloride, and Tris(hydroxymethyl)aminomethane Hydrochloride , 1998 .

[42]  A. Apelblat,et al.  Volumetric properties of water, and solutions of sodium chloride and potassium chloride at temperatures fromT = 277.15 K toT = 343.15 K at molalities of (0.1, 0.5, and 1.0)mol·kg − 1 , 1999 .

[43]  Y. Hou,et al.  Salt Effects on the Isobaric Vapor−Liquid Equilibrium for Four Binary Systems , 2000 .

[44]  Ernesto Vercher,et al.  Isobaric Vapor−Liquid Equilibria for Water + Acetic Acid + Lithium Acetate , 2001 .

[45]  Alexander Apelblat,et al.  Volumetric properties of aqueous solutions of lithium chloride at temperatures from 278.15 K to 338.15 K and molalities (0.1, 0.5, and 1.0)mol · kg − 1 , 2001 .

[46]  Juha-Pekka Pokki,et al.  Vapor−Liquid Equilibrium for the Binary Systems of 3-Methylpentane + 2-Methyl-2-propanol at 331 K and + 2-Butanol at 331 K , 2001 .

[47]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[48]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[49]  Joachim Gross,et al.  Application of the Perturbed-Chain SAFT Equation of State to Associating Systems , 2002 .

[50]  Yan Lu,et al.  Calorimetric and volumetric studies of the interactions of butyramide in aqueous carboxylic acid solutions at 298.15 K , 2002 .

[51]  S. K. Chaudhari,et al.  Thermodynamic Properties of Aqueous Solutions of Lithium Chloride , 2002 .

[52]  M. Steiger,et al.  Vapour pressure measurements and thermodynamic properties of aqueous solutions of sodium acetate , 2002 .

[53]  J. Gmehling,et al.  Experimental determination and correlation of liquid density data of electrolyte mixtures containing water or methanol , 2003 .

[54]  Sven Horstmann,et al.  Experimental Determination and Prediction of Gas Solubility Data for Methane + Water Solutions Containing Different Monovalent Electrolytes , 2003 .

[55]  Liang-Sun Lee,et al.  Vapor pressures of aqueous solutions with mixed salts of NaCl + KBr and NaBr + KCl , 2003 .

[56]  A. Orchillés,et al.  Isobaric Vapor−Liquid Equilibria for Water + Acetic Acid + Potassium Acetate , 2004 .

[57]  and A. Domínguez,et al.  Dynamic Viscosities, Densities, and Speed of Sound and Derived Properties of the Binary Systems Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15) K at Atmospheric Pressure , 2004 .

[58]  Guofeng Guan,et al.  Isobaric Vapor−Liquid Equilibria for Water + Acetic Acid + (n-Pentyl Acetate or Isopropyl Acetate) , 2005 .

[59]  W. Kunz,et al.  Vapor Pressures and Osmotic Coefficients of Aqueous LiOH Solutions at Temperatures Ranging from 298.15 to 363.15 K , 2005 .

[60]  Gabriele Sadowski,et al.  Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory , 2005 .

[61]  A. Chmielewska,et al.  Viscosimetric studies of aqueous solutions of salts of carboxylic acids , 2005 .

[62]  A. Apelblat,et al.  Volumetric and thermal properties of some aqueous electrolyte solutions: Part 5. Potassium bromide and potassium iodide 0.1, 0.5, and 1.0 mol kg−1 solutions at temperatures from T=278.15 to 338.15 K , 2005 .

[63]  J. Gracia-Fadrique,et al.  Refractive Index, Surface Tension, and Density of Aqueous Mixtures of Carboxylic Acids at 298.15 K , 2006 .

[64]  H. Corti,et al.  Densities and Apparent Molar Volumes of NaOH(aq) to the Temperature 623 K and Pressure to 30 MPa , 2006 .

[65]  K. Aim,et al.  Isothermal vapour–liquid equilibrium with chemical reaction in the quaternary water + methanol + acetic acid + methyl acetate system, and in five binary subsystems , 2006 .

[66]  Ho-mu Lin,et al.  Densities of aqueous solutions containing model compounds of amino acids and ionic salts at T = 298.15 K , 2007 .

[67]  Juhani Aittamaa,et al.  Vapor-liquid equilibrium for binary system of thiophene + 2,2,4-trimethylpentane at 343.15 and 353.15 K and thiophene + 2-ethoxy-2-methylpropane at 333.15 and 343.15 K. , 2007 .

[68]  Sanjeevan J. Kharat Density, viscosity and ultrasonic velocity studies of aqueous solutions of sodium acetate at different temperatures , 2008 .

[69]  G. Sadowski,et al.  Modeling of aqueous amino acid and polypeptide solutions with PC-SAFT , 2008 .

[70]  G. Sadowski,et al.  Modeling aqueous electrolyte solutions: Part 1. Fully dissociated electrolytes , 2008 .

[71]  Pardeep Singh,et al.  Volumetric and Viscometric Studies of Some Metal Acetates in Aqueous Solutions at T = (288.15 to 318.15) K , 2008 .

[72]  Youdong Lin,et al.  Modeling Liquid−Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC , 2008 .

[73]  Tamar L Greaves,et al.  Protic ionic liquids: properties and applications. , 2008, Chemical reviews.

[74]  D. H. Dagade,et al.  Activity Coefficient Studies in Ternary Aqueous Solutions at 298.15 K: H2O + α-Cyclodextrin + Potassium Acetate and H2O + 18-Crown-6 + Hydroquinone Systems , 2009 .

[75]  石川 勉 Superbases for organic synthesis : guanidines, amidines, phosphazenes and related organocatalysts , 2009 .

[76]  T. Ishikawa Superbases for Organic Synthesis , 2009 .

[77]  Ming-Jer Lee,et al.  Volumetric properties of MES, MOPS, MOPSO, and MOBS in water and in aqueous electrolyte solutions , 2010 .

[78]  Jimmy A. López,et al.  Experimental measurements of vapor–liquid equilibria at low pressure: Systems containing alcohols, esters and organic acids , 2010 .

[79]  R. Chawla,et al.  Volumetric Properties of Some α,ω-Aminocarboxylic Acids in Aqueous Sodium Acetate and Magnesium Acetate Solutions at T = (288.15 to 318.15) K , 2010 .

[80]  Luke D. Simoni,et al.  Measurement and Prediction of Vapor−Liquid Equilibrium of Aqueous 1-Ethyl-3-methylimidazolium-Based Ionic Liquid Systems , 2010 .

[81]  M. Penttilä,et al.  Capillary electrophoresis for the monitoring of carboxylic acid production by Gluconobacter oxydans. , 2010, Journal of chromatography. A.

[82]  L. Rebelo,et al.  Ionic liquids and reactive azeotropes: the continuity of the aprotic and protic classes. , 2010, Physical chemistry chemical physics : PCCP.

[83]  S. Meech,et al.  Hydroxide Hydrogen Bonding: Probing the Solvation Structure through Ultrafast Time Domain Raman Spectroscopy. , 2011, The journal of physical chemistry letters.

[84]  A. Bald,et al.  Volumetric Properties of Some Aliphatic Mono- and Dicarboxylic Acids in Water at 298.15 K , 2011 .

[85]  G. Hefter,et al.  Molar Volumes and Heat Capacities of Aqueous Solutions of Short-Chain Aliphatic Sodium Carboxylates at 25 °C , 2011 .

[86]  G. Sadowski,et al.  Modeling imidazolium-based ionic liquids with ePC-SAFT , 2012 .

[87]  Alistair W. T. King,et al.  Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. , 2013, ChemSusChem.

[88]  H. Weingärtner,et al.  The static dielectric permittivity of ionic liquids , 2014 .

[89]  N. Nakamura,et al.  1H NMR Evaluation of Polar and Nondeuterated Ionic Liquids for Selective Extraction of Cellulose and Xylan from Wheat Bran , 2014 .

[90]  G. Sadowski,et al.  Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components , 2014 .

[91]  G. Sadowski,et al.  ePC-SAFT revised , 2014 .

[92]  Xiuyang Lu,et al.  Isobaric Vapor–Liquid Equilibria for Water + Acetic Acid + 1-Ethyl-3-methylimidazolium Diethylphosphate at 101.32 kPa , 2014 .

[93]  Vincent Lemort,et al.  Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp , 2014, Industrial & engineering chemistry research.

[94]  G. Sieder,et al.  Predicting CO2 solubility in aqueous N-methyldiethanolamine solutions with ePC-SAFT , 2015 .

[95]  Alistair W. T. King,et al.  Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate: a batch simulation of the IONCELL-F process , 2015 .

[96]  R. Parthasarathi,et al.  Design of low-cost ionic liquids for lignocellulosic biomass pretreatment , 2015 .

[97]  Brooks D. Rabideau,et al.  Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. , 2015, Physical chemistry chemical physics : PCCP.

[98]  C. Drummond,et al.  Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. , 2015, Chemical reviews.

[99]  C. Drummond,et al.  Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. , 2015, Chemical reviews.

[100]  Alistair W. T. King,et al.  Feasibility of thermal separation in recycling of the distillable ionic liquid [DBNH][OAc] in cellulose fiber production , 2016 .

[101]  Ville Alopaeus,et al.  Dew points of pure DBN and DBU and vapor-liquid equilibria of water + DBN and water + DBU systems for cellulose solvent recycling , 2016 .

[102]  Alistair W. T. King,et al.  Experimental and Theoretical Thermodynamic Study of Distillable Ionic Liquid 1,5-Diazabicyclo[4.3.0]non-5-enium Acetate , 2016 .

[103]  Julia L. Shamshina,et al.  Pulping of Crustacean Waste Using Ionic Liquids: To Extract or Not To Extract , 2016 .

[104]  A. Ostonen Thermodynamic Study of Protic Ionic Liquids , 2017 .

[105]  M. Chabinyc,et al.  Tailoring the Seebeck Coefficient of PEDOT:PSS by Controlling Ion Stoichiometry in Ionic Liquid Additives , 2018, Chemistry of Materials.

[106]  Luís M. N. B. F. Santos,et al.  Experimental Evidence for Azeotrope Formation from Protic Ionic Liquids. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[107]  C. Drummond,et al.  Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (PIL)-water systems. , 2018, The Journal of chemical physics.

[108]  Ville Alopaeus,et al.  Physical Properties of 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD) , 2019, International Journal of Thermophysics.