Quantification of overestimation in interval simulations of uncertain systems

In this paper, the properties of a criterion to quantify the overestimation arising in both interval evaluation of multidimensional nonlinear multivariate functions and interval simulation of dynamical systems are discussed. Computationally efficient, easy-to-implement consistency tests which are based on this criterion are developed for static as well as dynamic nonlinearities to find tight guaranteed enclosures of all possible results. The efficiency of these consistency tests is demonstrated for steady-state analysis of an electrical bridge circuit and for dynamical simulation of an activated sludge process in biological wastewater treatment under consideration of parameter uncertainties.

[1]  Pascal Van Hentenryck,et al.  Multistep Filtering Operators for Ordinary Differential Equations , 1999, CP.

[2]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[3]  Rudolf J. Lohner,et al.  On the Ubiquity of the Wrapping Effect in the Computation of Error Bounds , 2001, Perspectives on Enclosure Methods.

[4]  Sylvie Gillot,et al.  The COST Simulation Benchmark: Description and Simulator Manual , 2001 .

[5]  Jörg Londong,et al.  HINWEISE ZUR DYNAMISCHEN SIMULATION VON BELEBUNGSANLAGEN MIT DEM BELEBTSCHLAMMODELL NR. 1 DER IAWQ , 1998 .

[6]  H. Aschemann,et al.  Robust controller design for bounded state and control variables and uncertain parameters using interval methods , 2005, 2005 International Conference on Control and Automation.

[7]  Nathalie Revol,et al.  Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY , 2005, J. Log. Algebraic Methods Program..

[8]  Manfred Köhne,et al.  Analyse und Regelung biologischer Abwasserreinigungsprozesse in Kläranlagen , 1998 .

[9]  Andreas Rauh,et al.  Consistency tests in guaranteed simulation of nonlinear uncertain systems with application to an activated sludge process , 2007 .

[10]  M. A. Latifi,et al.  Optimal operation of alternating activated sludge processes , 2005 .

[11]  I. Takács A dynamic model of the clarification-thickening process , 1991 .

[12]  M. Berz,et al.  SUPPRESSION OF THE WRAPPING EFFECT BY TAYLOR MODEL- BASED VALIDATED INTEGRATORS MSU REPORT MSUHEP 40910 , 2004 .

[13]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[14]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .

[15]  Andreas Rauh,et al.  Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes , 2007 .

[16]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[17]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[18]  Pascal Van Hentenryck,et al.  Consistency Techniques in Ordinary Differential Equations , 1998, Constraints.

[19]  K. Makino,et al.  COSY INFINITY Version 8 . 1 User ’ s Guide and Reference Manual ∗ , 2001 .

[20]  Nedialko S. Nedialkovy The Design and Implementation of an Object-Oriented Validated ODE Solver , 2002 .