Specialization for written words over objects in the visual cortex

[1]  D. Scott Perceptual learning. , 1974, Queen's nursing journal.

[2]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[3]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[4]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[5]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[6]  T A Polk,et al.  The neural development and organization of letter recognition: evidence from functional neuroimaging, computational modeling, and behavioral studies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[8]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[9]  Joël Pynte,et al.  Reading as a Perceptual Process , 2000 .

[10]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[11]  Leslie G. Ungerleider,et al.  The Representation of Objects in the Human Occipital and Temporal Cortex , 2000, Journal of Cognitive Neuroscience.

[12]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[13]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[14]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[15]  Tatjana A. Nazir,et al.  Traces of Print Along the Visual Pathway , 2000 .

[16]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[17]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[18]  C. Whitney How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review , 2001, Psychonomic bulletin & review.

[19]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[20]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[21]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[22]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[23]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[24]  I. Gauthier,et al.  Perceptual interference supports a non-modular account of face processing , 2003, Nature Neuroscience.

[25]  Joseph T Devlin,et al.  The myth of the visual word form area , 2003, NeuroImage.

[26]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[27]  I. Biederman,et al.  Shape Tuning in Macaque Inferior Temporal Cortex , 2003, The Journal of Neuroscience.

[28]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[29]  S. Dehaene,et al.  Learning to read without a left occipital lobe: Right‐hemispheric shift of visual word form area , 2004, Annals of neurology.

[30]  Stanislas Dehaene,et al.  Distinct unimodal and multimodal regions for word processing in the left temporal cortex , 2004, NeuroImage.

[31]  G. Rizzolatti,et al.  Evolution of human cortical circuits for reading and arithmetic : The “ neuronal recycling ” hypothesis , 2004 .

[32]  T. Nazir,et al.  Reading habits, perceptual learning, and recognition of printed words , 2004, Brain and Language.

[33]  G. Orban,et al.  Color discrimination involves ventral and dorsal stream visual areas. , 2004, Cerebral cortex.

[34]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[35]  Stanislas Dehaene,et al.  Specialization within the ventral stream: the case for the visual word form area , 2004, NeuroImage.

[36]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[37]  W. Schneider,et al.  Cross‐cultural effect on the brain revisited: Universal structures plus writing system variation , 2005, Human brain mapping.

[38]  M. Sigman,et al.  Opinion TRENDS in Cognitive Sciences Vol.9 No.7 July 2005 The neural code for written words: a proposal , 2022 .

[39]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[40]  C. Gilbert,et al.  Top-Down Reorganization of Activity in the Visual Pathway after Learning a Shape Identification Task , 2005, Neuron.

[41]  Qiong Zhang,et al.  The Structures of Letters and Symbols throughout Human History Are Selected to Match Those Found in Objects in Natural Scenes , 2006, The American Naturalist.

[42]  R. Hess,et al.  Modulation of V1 activity by shape: image-statistics or shape-based perception? , 2006, Journal of neurophysiology.

[43]  S. Dehaene,et al.  Direct Intracranial, fMRI, and Lesion Evidence for the Causal Role of Left Inferotemporal Cortex in Reading , 2006, Neuron.

[44]  M. Brysbaert,et al.  Reexamining the word length effect in visual word recognition: New evidence from the English Lexicon Project , 2006, Psychonomic bulletin & review.

[45]  Cindy M. Bukach,et al.  Beyond faces and modularity: the power of an expertise framework , 2006, Trends in Cognitive Sciences.

[46]  Jeffrey R. Binder,et al.  Tuning of the human left fusiform gyrus to sublexical orthographic structure , 2006, NeuroImage.

[47]  N. Kanwisher,et al.  Visual word processing and experiential origins of functional selectivity in human extrastriate cortex , 2007, Proceedings of the National Academy of Sciences.

[48]  S. Dehaene,et al.  Cultural Recycling of Cortical Maps , 2007, Neuron.

[49]  Mariano Sigman,et al.  Hierarchical Coding of Letter Strings in the Ventral Stream: Dissecting the Inner Organization of the Visual Word-Form System , 2007, Neuron.

[50]  Christian Gerlach,et al.  The Visual What For Area: Words and pictures in the left fusiform gyrus , 2007, NeuroImage.

[51]  Russell A. Poldrack,et al.  The Neural Substrates of Visual Perceptual Learning of Words: Implications for the Visual Word Form Area Hypothesis , 2007, Journal of Cognitive Neuroscience.

[52]  B. Wandell,et al.  Differential sensitivity to words and shapes in ventral occipito-temporal cortex. , 2007, Cerebral cortex.

[53]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[54]  N. Kanwisher,et al.  Opinion TRENDS in Cognitive Sciences Vol.11 No.1 Can generic expertise explain special processing for faces? , 2022 .

[55]  W. K. Simmons,et al.  Measuring selectivity in fMRI data , 2007, Nature Neuroscience.

[56]  C. Gilbert,et al.  Learning to Link Visual Contours , 2008, Neuron.

[57]  J. Grainger,et al.  Letter perception: from pixels to pandemonium , 2008, Trends in Cognitive Sciences.

[58]  S. Rombouts,et al.  Selective activation around the left occipito‐temporal sulcus for words relative to pictures: Individual variability or false positives? , 2007, Human brain mapping.

[59]  Z. Kourtzi,et al.  Neural coding of global form in the human visual cortex. , 2008, Journal of neurophysiology.

[60]  S. Dehaene,et al.  Pure alexia as a disconnection syndrome: New diffusion imaging evidence for an old concept , 2008, Cortex.

[61]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[62]  Florent Aubry,et al.  Piecemeal recruitment of left-lateralized brain areas during reading: A spatio-functional account , 2008, NeuroImage.

[63]  Laurie S. Glezer,et al.  Evidence for Highly Selective Neuronal Tuning to Whole Words in the “Visual Word Form Area” , 2009, Neuron.

[64]  S. Dehaene,et al.  The role of invariant line junctions in object and visual word recognition , 2009, Vision Research.

[65]  M. Seghier,et al.  An anatomical signature for literacy , 2009, Nature.

[66]  Jonathan Grainger,et al.  Serial position effects in the identification of letters, digits, and symbols. , 2009, Journal of experimental psychology. Human perception and performance.

[67]  M. Kringelbach,et al.  Activation of the Left Inferior Frontal Gyrus in the First 200 ms of Reading: Evidence from Magnetoencephalography (MEG) , 2009, PloS one.

[68]  C. Gilbert,et al.  Perceptual learning and adult cortical plasticity , 2009, The Journal of physiology.

[69]  I. Gauthier,et al.  Beyond Shape: How You Learn about Objects Affects How They Are Represented in Visual Cortex , 2009, PloS one.

[70]  Evan F. Risko,et al.  Not all visual features are created equal: early processing in letter and word recognition , 2009, Psychonomic bulletin & review.

[71]  A. Wenger,et al.  Reading in the brain , 2010 .

[72]  J. Grainger,et al.  Crowding affects letters and symbols differently. , 2010, Journal of experimental psychology. Human perception and performance.

[73]  Katherine L. Wheat,et al.  During Visual Word Recognition, Phonology Is Accessed within 100 ms and May Be Mediated by a Speech Production Code: Evidence from Magnetoencephalography , 2010, The Journal of Neuroscience.

[74]  S. Dehaene,et al.  Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere , 2010, Journal of Cognitive Neuroscience.

[75]  Marcin Szwed,et al.  Unconsciously deciphering handwriting: Subliminal invariance for handwritten words in the visual word form area , 2010, NeuroImage.

[76]  C. Baker,et al.  Informativeness and learning: Response to Gauthier and colleagues , 2010, Trends in Cognitive Sciences.

[77]  I. Gauthier,et al.  Manipulating visual experience: Comment on Op de Beeck and Baker , 2010, Trends in Cognitive Sciences.

[78]  R. Malach,et al.  Top-down engagement modulates the neural expressions of visual expertise. , 2010, Cerebral cortex.

[79]  S. Dehaene,et al.  How Learning to Read Changes the Cortical Networks for Vision and Language , 2010, Science.

[80]  C. Price The anatomy of language: a review of 100 fMRI studies published in 2009 , 2010, Annals of the New York Academy of Sciences.

[81]  Ferath Kherif,et al.  Automatic Top-Down Processing Explains Common Left Occipito-Temporal Responses to Visual Words and Objects , 2010, Cerebral cortex.

[82]  Masae Sato,et al.  Reading in the brain , 2012 .

[83]  G. Orban,et al.  Practising orientation identi ® cation improves orientation coding in V 1 neurons , 2022 .