Function and regulation of SUMO proteases

Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins is highly dynamic, and both SUMO–protein conjugation and cleavage can be regulated. Protein desumoylation is carried out by SUMO proteases, which control cellular mechanisms ranging from transcription and cell division to ribosome biogenesis. Recent advances include the discovery of two novel classes of SUMO proteases, insights regarding SUMO protease specificity, and revelations of previously unappreciated SUMO protease functions in several key cellular pathways. These developments, together with new connections between SUMO proteases and the recently discovered SUMO-targeted ubiquitin ligases (STUbLs), make this an exciting period to study these enzymes.

[1]  A. Yergey,et al.  Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases , 2008, The Journal of cell biology.

[2]  E. Yeh,et al.  NF-κB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. , 2011, Molecular cell.

[3]  G. Barton,et al.  System-Wide Changes to SUMO Modifications in Response to Heat Shock , 2009, Science Signaling.

[4]  M. J. Lyst,et al.  A role for SUMO modification in transcriptional repression and activation. , 2007, Biochemical Society transactions.

[5]  A. Sharrocks,et al.  SUMO promotes HDAC-mediated transcriptional repression. , 2004, Molecular cell.

[6]  M. Hochstrasser,et al.  The Ulp1 SUMO isopeptidase , 2003, The Journal of cell biology.

[7]  D. Schwartz,et al.  The Ulp2 SUMO Protease Is Required for Cell Division following Termination of the DNA Damage Checkpoint , 2007, Molecular and Cellular Biology.

[8]  Da-Qiang Li,et al.  SUMOylation and SUMO-interacting Motif (SIM) of Metastasis Tumor Antigen 1 (MTA1) Synergistically Regulate Its Transcriptional Repressor Function* , 2011, The Journal of Biological Chemistry.

[9]  Jaclyn R. Gareau,et al.  The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition , 2010, Nature Reviews Molecular Cell Biology.

[10]  Mary B. Kroetz,et al.  The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation* , 2007, Journal of Biological Chemistry.

[11]  Huilin Zhou,et al.  Global Analyses of Sumoylated Proteins in Saccharomyces cerevisiae , 2004, Journal of Biological Chemistry.

[12]  S. Jackson,et al.  RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. , 2012, Genes & development.

[13]  Jinke Cheng,et al.  Induction of the SUMO-specific Protease 1 Transcription by the Androgen Receptor in Prostate Cancer Cells* , 2007, Journal of Biological Chemistry.

[14]  Mary B. Kroetz,et al.  Essential role of nuclear localization for yeast Ulp2 SUMO protease function. , 2009, Molecular biology of the cell.

[15]  E. Koonin,et al.  Novel Predicted Peptidases with a Potential Role in the Ubiquitin Signaling Pathway , 2004, Cell cycle.

[16]  M. Hochstrasser,et al.  The Yeast ULP2 (SMT4) Gene Encodes a Novel Protease Specific for the Ubiquitin-Like Smt3 Protein , 2000, Molecular and Cellular Biology.

[17]  Zachary C. Elmore,et al.  Sumo-dependent substrate targeting of the SUMO protease Ulp1 , 2011, BMC Biology.

[18]  David Reverter,et al.  Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates , 2006, Nature Structural &Molecular Biology.

[19]  J. Delrow,et al.  Degringolade, a SUMO‐targeted ubiquitin ligase, inhibits Hairy/Groucho‐mediated repression , 2011, The EMBO journal.

[20]  D. Eick,et al.  The nucleolar SUMO‐specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing , 2008, EMBO reports.

[21]  J. Yook,et al.  Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. , 2011, Molecular cell.

[22]  Erin K O'Shea,et al.  Identification of Sumoylated Proteins by Systematic Immunoprecipitation of the Budding Yeast Proteome* , 2005, Molecular & Cellular Proteomics.

[23]  J. Naismith,et al.  Mechanism of ubiquitylation by dimeric RING ligase RNF4 , 2011, Nature Structural &Molecular Biology.

[24]  S. Brill,et al.  Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates* , 2008, Journal of Biological Chemistry.

[25]  E. Yeh,et al.  Characterization of a Family of Nucleolar SUMO-specific Proteases with Preference for SUMO-2 or SUMO-3* , 2006, Journal of Biological Chemistry.

[26]  E. Koonin,et al.  Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. , 2001, Genetics.

[27]  B. Schulman,et al.  Breaking up with a kinky SUMO , 2006, Nature Structural &Molecular Biology.

[28]  W. Min,et al.  SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis , 2008, Cell Death and Differentiation.

[29]  V. G. Panse,et al.  Formation and Nuclear Export of Preribosomes Are Functionally Linked to the Small‐Ubiquitin‐Related Modifier Pathway , 2006, Traffic.

[30]  H. McBride,et al.  Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission , 2004, Current Biology.

[31]  T. Hunter,et al.  Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. , 2007, Nature Reviews Molecular Cell Biology.

[32]  M. Hochstrasser,et al.  Desumoylation of the Endoplasmic Reticulum Membrane VAP Family Protein Scs2 by Ulp1 and SUMO Regulation of the Inositol Synthesis Pathway , 2011, Molecular and Cellular Biology.

[33]  Philipp Stelter,et al.  Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation , 2003, Nature.

[34]  M. Lindberg,et al.  SUMO modification regulates the transcriptional activity of MAML1 , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[35]  James H Naismith,et al.  The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. , 2006, The Biochemical journal.

[36]  R. Schwartz,et al.  SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. , 2010, Molecular cell.

[37]  A. Murray,et al.  Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. , 2001, Genetics.

[38]  Y. Takahashi,et al.  Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. , 2000, Journal of biochemistry.

[39]  S. H. Baek,et al.  A New SUMO-1-specific Protease, SUSP1, That Is Highly Expressed in Reproductive Organs* , 2000, The Journal of Biological Chemistry.

[40]  Luming Yin,et al.  Identification and Characterization of DEN1, a Deneddylase of the ULP Family* , 2003, Journal of Biological Chemistry.

[41]  M. Hochstrasser,et al.  Origin and function of ubiquitin-like proteins , 2009, Nature.

[42]  V. G. Panse,et al.  Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins , 2003, Nature Cell Biology.

[43]  D. Reverter,et al.  Swapping Small Ubiquitin-like Modifier (SUMO) Isoform Specificity of SUMO Proteases SENP6 and SENP7* , 2011, The Journal of Biological Chemistry.

[44]  E. Yeh,et al.  Differential Regulation of Sentrinized Proteins by a Novel Sentrin-specific Protease* , 2000, The Journal of Biological Chemistry.

[45]  H. McBride,et al.  The SUMO protease SENP5 is required to maintain mitochondrial morphology and function , 2007, Journal of Cell Science.

[46]  R. Hay,et al.  SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. , 2012, Genes & development.

[47]  A. Sharrocks,et al.  SENP1 participates in the dynamic regulation of Elk-1 SUMOylation , 2010, The Biochemical journal.

[48]  R. Hay,et al.  NEDP1, a Highly Conserved Cysteine Protease That deNEDDylates Cullins* , 2003, Journal of Biological Chemistry.

[49]  C. Grou,et al.  Heat shock induces a massive but differential inactivation of SUMO-specific proteases. , 2012, Biochimica et biophysica acta.

[50]  M. Dasso,et al.  Association of the Human SUMO-1 Protease SENP2 with the Nuclear Pore* , 2002, The Journal of Biological Chemistry.

[51]  Andrew Emili,et al.  Defining the SUMO-modified Proteome by Multiple Approaches in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[52]  Pier Paolo Pandolfi,et al.  Nucleophosmin and cancer , 2006, Nature Reviews Cancer.

[53]  T. Kanda,et al.  Transcriptional Repression by Sumoylation of Epstein-Barr Virus BZLF1 Protein Correlates with Association of Histone Deacetylase* , 2010, The Journal of Biological Chemistry.

[54]  David Reverter,et al.  A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. , 2004, Structure.

[55]  H. McBride,et al.  Translocation of SenP5 from the Nucleoli to the Mitochondria Modulates DRP1-dependent Fission during Mitosis* , 2009, The Journal of Biological Chemistry.

[56]  B. Oh,et al.  Crystal structure of DeSI‐1, a novel deSUMOylase belonging to a putative isopeptidase superfamily , 2012, Proteins.

[57]  G. Coupland,et al.  Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes , 2010, Proceedings of the National Academy of Sciences.

[58]  P. Tailor,et al.  The Small Ubiquitin-like Modifier-Deconjugating Enzyme Sentrin-Specific Peptidase 1 Switches IFN Regulatory Factor 8 from a Repressor to an Activator during Macrophage Activation , 2012, The Journal of Immunology.

[59]  R. Vierstra,et al.  Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis , 2010, Proceedings of the National Academy of Sciences.

[60]  H. Ovaa,et al.  Ubiquitin‐specific protease‐like 1 (USPL1) is a SUMO isopeptidase with essential, non‐catalytic functions , 2012, EMBO reports.

[61]  M. Dasso,et al.  The SUMO protease SENP6 is essential for inner kinetochore assembly , 2010, The Journal of cell biology.

[62]  Hirofumi Tanaka,et al.  A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. , 2000, European journal of biochemistry.

[63]  M. Kitagawa,et al.  Characterization of a Novel Mammalian SUMO-1/Smt3-specific Isopeptidase, a Homologue of Rat Axam, Which Is an Axin-binding Protein Promoting β-Catenin Degradation* , 2001, The Journal of Biological Chemistry.

[64]  James H. Naismith,et al.  Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis , 2012, Nature.

[65]  Ivan Dikic,et al.  Specification of SUMO1- and SUMO2-interacting Motifs* , 2006, Journal of Biological Chemistry.

[66]  S. Muller,et al.  The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex , 2011, The EMBO journal.

[67]  John A Tainer,et al.  SUMO‐targeted ubiquitin ligases in genome stability , 2007, The EMBO journal.

[68]  Oliver Kerscher,et al.  SUMO junction—what's your function? , 2007, EMBO reports.

[69]  Keith D Wilkinson,et al.  Distribution and paralogue specificity of mammalian deSUMOylating enzymes. , 2010, The Biochemical journal.

[70]  Shanshan Zhu,et al.  Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. , 2009, Molecular cell.

[71]  Jinke Cheng,et al.  SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia , 2007, Cell.

[72]  Terry D. Lee,et al.  Small Ubiquitin-like Modifier (SUMO) Modification of E1 Cys Domain Inhibits E1 Cys Domain Enzymatic Activity* , 2012, The Journal of Biological Chemistry.

[73]  J. Bachant,et al.  The SUMO Isopeptidase Ulp2p Is Required to Prevent Recombination-Induced Chromosome Segregation Lethality following DNA Replication Stress , 2011, PLoS genetics.

[74]  E. Yeh,et al.  Ubiquitin-like proteins: new wines in new bottles. , 2000, Gene.

[75]  K. Wilkinson,et al.  SUSP1 antagonizes formation of highly SUMO2/3-conjugated species , 2006, The Journal of cell biology.

[76]  O. Gabrielsen,et al.  SUMO modification regulates the transcriptional activity of FLASH. , 2009, Biochemical and biophysical research communications.

[77]  Jinke Cheng,et al.  SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. , 2007, Cell.

[78]  David Owerbach,et al.  A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. , 2005, Biochemical and biophysical research communications.

[79]  H. Ploegh,et al.  The SUMO-Specific Protease SENP5 Is Required for Cell Division , 2006, Molecular and Cellular Biology.

[80]  E. Yeh,et al.  SENP3 is responsible for HIF‐1 transactivation under mild oxidative stress via p300 de‐SUMOylation , 2009, The EMBO journal.

[81]  I. Matic,et al.  Purification and identification of endogenous polySUMO conjugates , 2011, EMBO reports.

[82]  M. Hochstrasser,et al.  The Ulp 1 SUMO isopeptidase : distinct domains required for viability , nuclear envelope localization , and substrate specificity , 2003 .

[83]  J. Bachant,et al.  The yeast SUMO isopeptidase Smt4/Ulp2 and the Polo Kinase Cdc5 act in an opposing fashion to regulate sumoylation in mitosis and cohesion at centromeres , 2009, Cell cycle.

[84]  Erica S. Johnson,et al.  The SUMO Isopeptidase Ulp2 Prevents Accumulation of SUMO Chains in Yeast* , 2003, Journal of Biological Chemistry.

[85]  Z. Wang,et al.  Quality Control of a Transcriptional Regulator by SUMO-Targeted Degradation , 2009, Molecular and Cellular Biology.

[86]  N. Mailand,et al.  DNA damage–inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger , 2012, The Journal of cell biology.

[87]  Z. Wang,et al.  Genetic Analysis Connects SLX5 and SLX8 to the SUMO Pathway in Saccharomyces cerevisiae , 2006, Genetics.

[88]  Mingyao Liu,et al.  Induction of SENP1 in Endothelial Cells Contributes to Hypoxia-driven VEGF Expression and Angiogenesis* , 2010, The Journal of Biological Chemistry.

[89]  E. Yeh,et al.  Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. , 2010, Molecular cell.

[90]  E. Yeh,et al.  Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90 , 2010, The EMBO journal.

[91]  James H Naismith,et al.  SUMO protease SENP1 induces isomerization of the scissile peptide bond , 2006, Nature Structural &Molecular Biology.

[92]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[93]  S. Elledge,et al.  The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. , 2002, Molecular cell.

[94]  C. Lima,et al.  Structure of the Human SENP7 Catalytic Domain and Poly-SUMO Deconjugation Activities for SENP6 and SENP7* , 2008, Journal of Biological Chemistry.

[95]  N. Wei,et al.  DEN1 Is a Dual Function Protease Capable of Processing the C Terminus of Nedd8 and Deconjugating Hyper-neddylated CUL1* , 2003, Journal of Biological Chemistry.

[96]  Ueli Aebi,et al.  A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. , 2004, Molecular cell.

[97]  Florian Gnad,et al.  Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. , 2010, Molecular cell.

[98]  Young Yang,et al.  SUMOylation of RORalpha potentiates transcriptional activation function. , 2009, Biochemical and biophysical research communications.

[99]  C. Lima,et al.  Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. , 2000, Molecular cell.

[100]  M. Dasso,et al.  Modification in reverse: the SUMO proteases. , 2007, Trends in biochemical sciences.

[101]  S. Brill,et al.  Genetic Evidence That Polysumoylation Bypasses the Need for a SUMO-Targeted Ub Ligase , 2011, Genetics.

[102]  C. Sherr,et al.  Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3 , 2008, Cell cycle.

[103]  John R Yates,et al.  Global Analysis of Protein Sumoylation in Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[104]  Y. Barral,et al.  Regulation of Mitotic Spindle Asymmetry by SUMO and the Spindle-Assembly Checkpoint in Yeast , 2008, Current Biology.

[105]  Bernhard Kuster,et al.  A Proteome-wide Approach Identifies Sumoylated Substrate Proteins in Yeast* , 2004, Journal of Biological Chemistry.

[106]  S. Au,et al.  Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. , 2005, The Biochemical journal.

[107]  Ziming Zhang,et al.  Small Ubiquitin-like Modifier (SUMO) Recognition of a SUMO Binding Motif , 2005, Journal of Biological Chemistry.

[108]  T. Asahara,et al.  Desumoylation Activity of Axam, a Novel Axin-Binding Protein, Is Involved in Downregulation of β-Catenin , 2002, Molecular and Cellular Biology.

[109]  A. Waisman,et al.  SUMOylation of Blimp‐1 promotes its proteasomal degradation , 2011, FEBS letters.

[110]  S. F. Chau,et al.  Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[111]  R. Hay,et al.  The SUMO protease SENP6 is a direct regulator of PML nuclear bodies , 2011, Molecular biology of the cell.

[112]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[113]  T. Hughes,et al.  High-definition macromolecular composition of yeast RNA-processing complexes. , 2004, Molecular cell.

[114]  B. Oh,et al.  DeSUMOylating isopeptidase: a second class of SUMO protease , 2012, EMBO reports.

[115]  J. Palvimo,et al.  SUMOylation can regulate the activity of ETS-like transcription factor 4. , 2010, Biochimica et biophysica acta.

[116]  Erica S. Johnson,et al.  Ubiquitin-dependent Proteolytic Control of SUMO Conjugates* , 2007, Journal of Biological Chemistry.

[117]  R. Savkur,et al.  Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. , 1998, Nucleic acids research.

[118]  S. Brill,et al.  Wss1 Is a SUMO-Dependent Isopeptidase That Interacts Genetically with the Slx5-Slx8 SUMO-Targeted Ubiquitin Ligase , 2010, Molecular and Cellular Biology.

[119]  T. Hunter,et al.  Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins , 2007 .

[120]  Yolanda T. Chong,et al.  A Novel Mechanism for SUMO System Control: Regulated Ulp1 Nucleolar Sequestration , 2010, Molecular and Cellular Biology.

[121]  M. Hochstrasser,et al.  A new protease required for cell-cycle progression in yeast , 1999, Nature.

[122]  S. Li,et al.  Insights into High Affinity Small Ubiquitin-like Modifier (SUMO) Recognition by SUMO-interacting Motifs (SIMs) Revealed by a Combination of NMR and Peptide Array Analysis* , 2011, The Journal of Biological Chemistry.

[123]  Mitchell D. Miller,et al.  Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites , 2011, PloS one.